

IBM

PowerPC 403
Evaluation Board Kit

User’s Manual

13H6987 000007

Seventh Edition (June 1997)

This edition of the IBM PowerPC 403 Evaluation Kit User’s Manual applies to the IBM PowerPC 403
Evaluation Board Kit and to all subsequent versions of the 403 Evaluation Board Kit until otherwise
indicated in new versions or technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such pro-
visions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS MANUAL “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publication or the accompanying source code examples,
whether individually or as one or more groups, will meet your requirements or that the publication or the
accompanying source code examples are error-free.

This publication could contain technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or program(s) described in this
publication at any time.

It is possible that this publication may contain references to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country. Such ref-
erences or information must not be construed to mean that IBM intends to announce such IBM prod-
ucts, programming, or services in your country. Any reference to an IBM licensed program in this
publication is not intended to state or imply that you can use only IBM’s licensed program. You can use
any functionally equivalent program instead.

No part of this publication may be reproduced or distributed in any form or by any means, or stored in a
data base or retrieval system, without the written permission of IBM.

Requests for copies of this publication and for technical information about IBM products should be
made to your IBM Authorized Dealer or your IBM Marketing Representative.

Address comments about this publication to:

IBM Corporation
Department YM5A
P.O. Box 12195
Research Triangle Park, NC 27709

email: ppc400pubs@vnet.ibm.com

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.

Printed in the United States of America.

4 3 2 1

Notice to U.S. Government Users–Documentation Related to Restricted Rights –Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.
403 EVB User’s Manual

Patents and Trademarks

IBM may have patents or pending patent applications covering the subject matter in this publication.
The furnishing of this publication does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thorn-
wood, NY 10594, United States of America.

The following terms are trademarks of IBM Corporation:

PowerPC 403
AIX
AIXwindows
IBM
OS Open
PowerPC
PowerPC Architecture
RISC System/6000
RISCWatch
RISCTrace

Other terms which are trademarks are the property of their respective owners.

403 EVB User’s Manual

Contents
About This Book .. xxiii
Who Should Use This Book .. xxiii
How This Book is Organized... xxiv
Contacting the IBM Embedded Systems Solution Center... xxvi
Related Publications .. xxvii

Overview of the 403 EVB.. 1-1
Introducing the 403 EVB Hardware Components ... 1-1

403 Evaluation Board .. 1-1

Cables and Power Supply ... 1-1
Introducing the 403 EVB Software Support Package .. 1-2

ROM Monitor ... 1-2
RISCWatch Debugger ... 1-2
IBM High C/C++ Compiler ... 1-3
OS Open Real-Time Operating System .. 1-3

Dhrystone Benchmark Program .. 1-3
Application Tools .. 1-3

Host System Requirements ... 2-1
RS/6000 Host System Requirements .. 2-1
PC Host System Requirements ... 2-2
SUN Host System Requirements... 2-3

Installing the EVB Software ... 3-1
RS/6000 Installation (ELF and XCOFF file formats) .. 3-1

EVB Software Support Package Installation - RS/6000 .. 3-1

RISCWatch Debugger Installation - RS/6000.. 3-4
PC Installation (ELF file format version only) ... 3-4

EVB Software Support Package Installation - PC ... 3-4
RISCWatch Debugger Installation - PC... 3-6

Sun Installation(ELF file format version only)... 3-6
EVB Software Support Package Installation - Sun.. 3-6

RISCWatch Debugger Installation - Sun ... 3-9

Host Configuration ... 4-1
RS/6000 Host Configuration .. 4-1

Serial Port Setup - RS/6000 .. 4-1

Ethernet Setup - RS/6000 ... 4-5
ROM Monitor-Debugger Communication Setup - RS/6000... 4-7

PC Host Configuration ... 4-7
Contents v

Serial Port Setup ... 4-8
Ethernet Setup - PC .. 4-10

Windows 3.1 ... 4-11
Ethernet Setup - Windows 95 ... 4-12
Ethernet Setup - Windows NT 3.51 .. 4-13

ROM Monitor-Debugger Communication Setup - PC.. 4-13
Sun Host Configuration.. 4-13

Serial Port Setup - SUN... 4-14
Ethernet Setup - SUN.. 4-14

ROM Monitor-Debugger Communication Setup - SUN... 4-15

403 EVB Connectors... 5-1
Serial Port Connectors... 5-3
Ethernet Connector .. 5-4
RISCWatch JTAG Debugger and RISCTrace Connectors ... 5-4
Expansion Interface Connector.. 5-6
Power Connector ... 5-8
Setting the EVB Jumpers... 5-9
Resetting the EVB.. 5-10
Critical Interrupt Switch .. 5-10
Connecting the 403 EVB Hardware ... 5-10
Using a Terminal Emulator .. 5-12

RS/6000 Terminal Emulation... 5-12
PC Terminal Emulation.. 5-13

Windows 3.1 and Windows NT Terminal Emulation ... 5-13
Windows 95 Terminal Emulation .. 5-13

SUN Terminal Emulation... 5-14
Booting the PowerPC 403 on the EVB .. 5-15

403 EVB Hardware .. 6-1
403 Embedded Controllers .. 6-2

PowerPC 403 Embedded Controller ... 6-2
403GC Embedded Controller .. 6-3
403GCX Embedded Controller.. 6-3

Memory Subsystems ... 6-3

External Memory Banks .. 6-4
Flash Memory Map and Bank Configuration ... 6-4
DRAM Memory Map and Bank Configuration ... 6-6
Bank Configuration (BR1) for the National 16550 Serial Controller .. 6-8

Bank Configuration (BR2) for the Ethernet Controller ... 6-10
403 EVB Address Map... 6-11
Ethernet and Serial Port Interrupts .. 6-11
The Ethernet Controller’s Network Address... 6-12
vi 403 EVB User’s Guide

Accessing the Ethernet Controller.. 6-12

403 EVB ROM Monitor.. 7-1
ROM Monitor Source Code.. 7-1
Communications Features ... 7-2
Bootp and tftp Configuration to support ROM Monitor Loads .. 7-2

RS/6000 bootp and tftp configuration .. 7-2
PC bootp and tftp configuration ... 7-4

Automatic startup for Windows 3.1 and Windows NT 3.51 ... 7-5
Automatic startup for Windows 95 .. 7-6

SUN bootp and tftp configuration .. 7-6
Accessing the ROM Monitor .. 7-8
ROM Monitor Operation ... 7-8
Monitor Selections and Submenus .. 7-9

Initial ROM Monitor Menu.. 7-10
Selecting Power-On Tests... 7-11

Selecting Boot Devices.. 7-13
Changing IP Addresses... 7-15
Using the Ping Test ... 7-17
Entering the Debugger .. 7-19

Disabling the Automatic Display .. 7-21
Displaying the Current Configuration... 7-22
Saving the Current Configuration .. 7-23
Setting the Baud Rate for S1 Boots... 7-24

S1 Boot.. 7-26
Exiting the Main Menu ... 7-28

ROM Monitor User Functions... 7-30
Flash Update Utility .. 7-30

403 EVB Sample Applications ... 8-1
Overview .. 8-1
ROM Monitor Flash Image ... 8-2
Using the Software Samples... 8-4

Building and Running the Dhrystone Benchmark.. 8-5
Building and Running the usr_samp Program... 8-6

Building and Running the timesamp Program ... 8-7
Building and Running the mmu_samp Program.. 8-8

Resolving Execution Problems .. 8-10
Using the Ping Test on the ROM Monitor to Verify Connectivity ... 8-10
bootp and tftp Servers (Daemons) for ROM Monitor loads ... 8-11

Using OS Open Functions ... 8-11

Application Libraries and Tools .. 9-1
Contents vii

OS Open Libraries ... 9-1
Using Libraries and Support Software ... 9-4

Serial Port Support Library .. 9-4
Boot Library(RAM)... 9-4
Input/Output Support Library ... 9-4

PowerPC Low-Level Processor Access Support Library... 9-5
ROM Boot Library.. 9-5
Software Timer Tick Support Library... 9-5

Device Drivers Supplied with the 403 EVB .. 9-6
Asynchronous Device Driver ... 9-6

Device Driver Installation .. 9-6
Device Installation... 9-7
Opening Asynchronous Communication Ports ... 9-8
Reading and Writing ... 9-8
I/O Control... 9-9
Polled Asynchronous I/O .. 9-10

Extended Serial Communication Controller Device Driver .. 9-11
Device Driver Installation .. 9-11
Device Installation... 9-11
Opening ESCC Communication Port.. 9-12
Reading and Writing ... 9-13
I/O Control... 9-13
Polled Asynchronous I/O .. 9-15

Ethernet Device Driver .. 9-16
ROM Monitor Ethernet Device Driver .. 9-17

ROM Monitor Ethernet Installation and Initialization ... 9-17
Utilities ... 9-18
Environment Bringup and Initialization... 9-24

Board bootstrap... 9-25
Environment Initialization... 9-25

Tools .. 9-25
elf2rom and xcofrom.. 9-25

hbranch ... 9-28
eimgbld.. 9-30
nimgbld (XCOFF kits only) .. 9-31

403 EVB Function Reference ... 10-1
Attributes and Threads... 10-1

Async Safe Functions.. 10-1
Cancel Safe Functions .. 10-2
Interrupt Handler Safe Functions... 10-2
Callable from Application Thread Group Functions... 10-2
viii 403 EVB User’s Guide

Processors... 10-2
403 EVB Functions .. 10-2

async_init().. 10-13
biosenet_attach() .. 10-14
clock_set()... 10-16

dbg_ioLib_init().. 10-17
dcache_flush()... 10-18
dcache_invalidate() ... 10-19
dma_disable() ... 10-20

dma_setup() .. 10-21
dma_status() ... 10-23
enet_disable_ipinput()... 10-25
enet_enable_ipinput() ... 10-26

enet_native_attach() ... 10-27
enet_recv_packet() ... 10-29
enet_send_packet() .. 10-30
escc_init().. 10-31

ext_int_config().. 10-32
ext_int_disable().. 10-33
ext_int_enable() .. 10-34
ext_int_install() .. 10-35

ext_int_query() .. 10-37
fpemul_init() .. 10-38
ioLib_init().. 10-39
oakenet_attach() ... 10-40

ppcAbend().. 10-41
ppcAndMsr().. 10-42
ppcCntlzw() ... 10-43
ppcDcbf()... 10-44

ppcDcbi()... 10-45
ppcDcbst()... 10-46
ppcDcbz().. 10-47
ppcDflush().. 10-49

ppcEieio() .. 10-50
ppcHalt().. 10-51
ppcIcbi() .. 10-52
ppcIsync().. 10-53

ppcMfbear()... 10-54
ppcMfbesr() ... 10-55
Contents ix

ppcMfbr0() - ppcMfbr7() .. 10-56
ppcMfbrh0() - ppcMfbrh7() .. 10-58
ppcMfcdbcr() ... 10-59
ppcMfdac1() - ppcMfdac2()... 10-60

ppcMfdbcr()... 10-61
ppcMfdbsr()... 10-62
ppcMfdccr() ... 10-63
ppcMfdcwr() .. 10-64

ppcMfdear()... 10-65
ppcMfdmacc0() - ppcMfdmacc3() ... 10-66
ppcMfdmacr0() - ppcMfdmacr3() .. 10-68
ppcMfdmact0() - ppcMfdmact3()... 10-69

ppcMtfmada0() - ppcMfdmada3() ... 10-70
ppcMfdmasa0() - ppcMfdmasa3()... 10-71
ppcMfdmasr().. 10-72
ppcMfesr()... 10-73

ppcMfevpr()... 10-74
ppcMfexier() .. 10-75
ppcMfexisr() .. 10-76
ppcMfgpr1()... 10-77

ppcMfgpr2()... 10-78
ppcMfiac1() ... 10-79
ppcMfiac2() ... 10-80
ppcMficcr() .. 10-81

ppcMficdbdr() .. 10-82
ppcMfIocr().. 10-83
ppcMfmsr().. 10-84
ppcMfpbl1() - ppcMfpbl2()... 10-85

ppcMfpbu1() - ppcMfpbu2() .. 10-86
ppcMfpid() ... 10-87
ppcMfpit() .. 10-88
ppcMfpvr()... 10-89

ppcMfsgr()... 10-90
ppcMfsprg0() - ppcMfsprg3() .. 10-91
ppcMfsrr0().. 10-92
ppcMfsrr1().. 10-93

ppcMfsrr2().. 10-94
ppcMfsrr3().. 10-95
x 403 EVB User’s Guide

ppcMftb() ... 10-96
ppcMftcr() .. 10-97
ppcMftlbhi() ... 10-98
ppcMftlblo() ... 10-99

ppcMftsr() .. 10-100
ppcMfutb() ... 10-101
ppcMfzpr() ... 10-102
ppcMtbesr() ... 10-103

ppcMtbr0() - ppcMtbr7() .. 10-104
ppcMtbrh0() - ppcMtbrh7() .. 10-106
ppcMtcdbcr() ... 10-107
ppcMtdac1() .. 10-108

ppcMtdac2() .. 10-109
ppcMtdbcr() ... 10-110
ppcMtdbsr() ... 10-111
ppcMtdccr() ... 10-112

ppcMtdcwr() .. 10-113
ppcMtdmacc0() - ppcMtdmacc3() ... 10-114
ppcMtdmacr0() - ppcMtdmacr3()... 10-115
ppcMtdmact0() - ppcMtdmact3() ... 10-116

ppcMtdmada0() - ppcMtdmada3()... 10-117
ppcMtdmasa0() - ppcMtdmasa3() ... 10-118
ppcMtdmasr() .. 10-119
ppcMtesr() ... 10-120

ppcMtevpr() ... 10-121
ppcMtexier() .. 10-122
ppcMtexisr() .. 10-123
ppcMtiac1() ... 10-124

ppcMtiac2() ... 10-125
ppcMticcr() .. 10-126
ppcMtiocr() .. 10-127
ppcMtmsr() .. 10-128

ppcMtpbl1() - ppcMtpbl2() ... 10-129
ppcMtpbu1() - ppcMtpbu2()... 10-130
ppcMtpid() ... 10-131
ppcMtpit() .. 10-132

ppcMtsgr() ... 10-133
ppcMtsprg0() - ppcMtsprg3()... 10-134
Contents xi

ppcMtsrr0().. 10-135
ppcMtsrr1().. 10-136
ppcMtsrr2().. 10-137
ppcMtsrr3().. 10-138

ppcMttb()... 10-139
ppcMttcr().. 10-140
ppcMttlbhi() ... 10-141
ppcMttlblo() ... 10-142

ppcMttsr().. 10-143
ppcMtzpr()... 10-144
ppcOrMsr().. 10-145
ppcSync().. 10-146

ppcTlbia() .. 10-147
ppcTlbsx() ... 10-148
processor_speed() .. 10-149
s1dbprintf().. 10-150

s1dbprintfapp().. 10-151
s2dbprintf().. 10-153
s2dbprintfapp().. 10-154
timertick_install() ... 10-156

timertick_remove() .. 10-157
vs1dbprintf() .. 10-158

Programmable Logic Equations.. A-1

Program Trace Calls ... B-1
Overview .. B-1
MSGDATA Structure.. B-1
Ptrace Definitions... B-4

RD_ATTACH (30).. B-5
Request data... B-5
Response data.. B-5

RD_CONTINUE (7) ... B-6
Request data... B-6
Response data.. B-6

RD_DETACH (31) ... B-7
Request data... B-7
Response data.. B-7

RD_FILL (105)... B-8
Request data... B-8
Response data.. B-8
xii 403 EVB User’s Guide

RD_KILL (8)... B-9
Request data... B-9
Response data.. B-9

RD_LDINFO (34)... B-10
Request data... B-10
Response data.. B-10

RD_LOAD (101) .. B-12
Request data... B-12
Response data.. B-12

RD_LOGIN (103)... B-13
Request data... B-13
Response data.. B-13

RD_LOGOFF (104) ... B-14
Request data... B-14
Response data.. B-14

RD_READ_D (2) ... B-15
Request data... B-15
Response data.. B-15

RD_READ_DCR (110) .. B-16
Request data... B-16
Response data.. B-16

RD_READ_GPR (11) .. B-17
Request data... B-17
Response data.. B-17

RD_READ_GPR_MULT(71) ... B-18
Request data... B-18
Response data.. B-18

RD_READ_I (1) ... B-19
Request data... B-19
Response data.. B-19

RD_READ_I_MULT (71) ... B-20
Request data... B-20
Response data.. B-20

RD_READ_SPR (115)... B-21
Request data... B-21
Response data.. B-21

RD_READ_TLB(116) .. B-22
Request data... B-22
Response data.. B-22

RD_STATUS (114).. B-23
Request data... B-23
Response data.. B-23

RD_STOP_APPL (113) ... B-24
Contents xiii

Request data... B-24
Response data.. B-24

RD_WAIT (108)... B-25
Request data... B-25
Response data.. B-25

RD_WRITE_BLOCK (19) .. B-26
Request data... B-26
Response data.. B-26

RD_WRITE_D (5).. B-27
Request data... B-27
Response data.. B-27

RD_WRITE_DCR (112)... B-28
Request data... B-28
Response data.. B-28

RD_WRITE_GPR (14)... B-29
Request data... B-29
Response data.. B-29

RD_WRITE_I (4) ... B-30
Request data... B-30
Response data.. B-30

RD_WRITE_SPR (112)... B-31
Request data... B-31
Response data.. B-31

RD_WRITE_TLB(117)... B-32
Request data... B-32
Response data.. B-32

RL_LDINFO (181) ... B-33
Request data... B-33
Response data.. B-33

RL_LOAD_REQ(180).. B-34
Request data... B-34
Response data.. B-34

ROM Monitor Load Format... C-1
Overview .. C-1
Section Types .. C-1

First Section .. C-2
Text Section .. C-3
Data Section.. C-3

Symbol Section ... C-3
Boot Header... C-3

403 EVB Bill of Materials .. D-1
xiv 403 EVB User’s Guide

Index .. X-1
Contents xv

xvi 403 EVB User’s Guide

Figures

Figure 5-1. 403 EVB Connectors .. 5-2

Figure 5-2. Nine-Pin Serial Port Connector... 5-3

Figure 5-3. RISCWatch JTAG and RISCTrace Headers .. 5-4

Figure 5-4. 120-Pin Eurocard Type R Header .. 5-6

Figure 5-5. Serial Port Connection.. 5-11

Figure 5-6. Point-to-Point 10Base2 Ethernet Connection ... 5-11

Figure 6-1. 403 EVB Block Diagram ... 6-2

Figure 7-1. ROM Monitor Address Map .. 7-9

Figure 9-1. elf2rom and xcofrom Output File .. 9-27

Figure 9-2. Detail of patch file placement.. 9-29

Figure 9-3. hbranch Output Image .. 9-29
Figures xvii

xviii 403 EVB User’s Manual

Tables

Table 5-1. Serial Port Signal Assignments.. 5-3

Table 5-2. Ethernet Connector Description.. 5-4

Table 5-3. RISCWatch JTAG Header Description ... 5-5

Table 5-4. RISCTrace Header Description .. 5-5

Table 5-5. Expansion Interface Signal Assignments.. 5-6

Table 5-6. Power Supply Connections.. 5-8

Table 5-7. EVB Jumper Settings.. 5-9

Table 6-1. BR Bank Address Select.. 6-4

Table 6-2. Bank Register 0 Field Settings.. 6-5

Table 6-3. Possible 403 EVB Bank Register 7 Settings... 6-7

Table 6-4. Bank Register 7 Field Settings.. 6-7

Table 6-5. Bank Register 1 Field Settings.. 6-8

Table 6-6. Bank Register 2 Field Settings.. 6-10

Table 6-7. 403 EVB Memory Map.. 6-11

Table 6-8. Ethernet and Serial Port Interrupts ... 6-11

Table 9-1. OS Open Libraries .. 9-1

Table 9-2. OS Open Libraries for the 403 EVB.. 9-4

Table 9-3. ioctl() Commands for Asynchronous Device Drivers .. 9-9

Table 9-4. ioctl() Commands for the ESCC Device Driver ... 9-13

Table 10-1. Functions Specific to 403 EVB.. 10-2

Table B-1. RD_ATTACH Request Table.. B-5

Table B-2. RD_ATTACH Response Table... B-5

Table B-3. RD_CONTINUE Request Table ... B-6

Table B-4. RD_CONTINUE Response Table .. B-6

Table B-5. RD_DETACH Request Table ... B-7

Table B-6. RD_DETACH Response Table .. B-7

Table B-7. RD_FILL Request Table... B-8

Table B-8. RD_FILL Response Table .. B-8
Tables xix

Table B-9. RD_KILL Request Table .. B-9

Table B-10. RD_KILL Response Table.. B-9

Table B-11. RD_LDINFO Request Table... B-10

Table B-12. RD_LDINFO Response Table.. B-10

Table B-13. RD_LOAD Request Table .. B-12

Table B-14. RD_LOAD Response Table ... B-12

Table B-15. RD_LOGIN Request Table... B-13

Table B-16. RD_LOGIN Response Table.. B-13

Table B-17. RD_LOGOFF Request Table ... B-14

Table B-18. RD_LOGOFF Response Table .. B-14

Table B-19. RD_READ_D Request Table ... B-15

Table B-20. RD_READ_D Response Table .. B-15

Table B-21. RD_READ_GPR Request Table .. B-17

Table B-22. RD_READ_GPR Response Table ... B-17

Table B-23. RD_READ_GPR_MULT Request Table .. B-18

Table B-24. RD_READ_GPR_MULT Response Table ... B-18

Table B-25. RD_READ_I Request Table... B-19

Table B-26. RD_READ_I Response Table .. B-19

Table B-27. RD_READ_I_MULT Request Table ... B-20

Table B-28. RD_READ_I_MULT Response Table .. B-20

Table B-29. RD_READ_SPR Request Table .. B-21

Table B-30. RD_READ_SPR Response Table.. B-21

Table B-31. RD_READ_TLB Request Table ... B-22

Table B-32. RD_READ_TLB Response Table .. B-22

Table B-33. RD_STATUS Request Table.. B-23

Table B-34. RD_STATUS Response Table... B-23

Table B-35. RD_STOP_APPL Request Table... B-24

Table B-36. RD_STOP_APPL Response Table .. B-24

Table B-37. RD_WAIT Request Table... B-25

Table B-38. RD_WAIT Response Table .. B-25
xx 403 EVB User’s Guide

Table B-39. RD_WRITE_BLOCK Request Table .. B-26

Table B-40. RD_WRITE_BLOCK Response Table ... B-26

Table B-41. RD_WRITE_D Request Table.. B-27

Table B-42. RD_WRITE_D Response Table ... B-27

Table B-43. RD_WRITE_DCR Request Table... B-28

Table B-44. RD_WRITE_DCR Response Table.. B-28

Table B-45. RD_WRITE_GPR Request Table... B-29

Table B-46. RD_WRITE_GPR Response Table.. B-29

Table B-47. RD_WRITE_I Request Table ... B-30

Table B-48. RD_WRITE_I Response Table... B-30

Table B-49. RD_WRITE_SPR Request Table ... B-31

Table B-50. RD_WRITE_SPR Response Table .. B-31

Table B-51. RD_WRITE_TLB Request Table.. B-32

Table B-52. RD_WRITE_TLB Response Table ... B-32

Table B-53. RL_LDINFO Request Table ... B-33

Table B-54. RL_LDINFO Response Table... B-33

Table B-55. RL_LOAD_REQ Request Table ... B-34

Table B-56. RL_LOAD_REQ Response Table .. B-34
Tables xxi

xxii 403 EVB User’s Guide

5
About This Book

This book contains the information you need to install and use the IBM® PowerPC™ 403™
Evaluation Board (EVB), a hardware and software development tool for the PowerPC
403GA, 403GC, and 403GCX 32-bit RISC embedded controllers.

Connection of the 403 EVB to a host system is required for the exercises in this book.
Supported host systems include:

• an IBM RISC System/6000™ workstation running AIX™ 3.2.5 (or higher)

• an IBM or compatible PC running one of the following

• Windows 3.1 (or higher) and a TCP/IP package compliant with the Microsoft
Windows Socket API definition

• Windows 95
• Windows NT 3.51

• a Sun SPARCstation 5, 10, or 20 workstation running Solaris 2.3 (or higher) or SunOS
4.1.3 (or higher)

The RISC System/6000 kit is available in both ELF and XCOFF file formats. The PC and
Sun kits are available in ELF file format only.

The 403 EVB hardware module comes with a 403GA, 403GC, or 403GCX controller, an
Ethernet controller, 128KB flash memory, two serial ports, 4 MB of DRAM, and expansion
and test interfaces. The reference design also includes technical specifications and
schematics.

The 403 EVB software includes the ROM Monitor (resident in the flash memory on the
board), ROM Monitor source code, IBM’s OS Open real time operating system, sample
application programs, application development libraries and tools, IBM’s High C/C++
compiler, and IBM’s RISCWatch, a source-level debugger that runs on the host.

Who Should Use This Book

This book is for hardware and software developers who need to evaluate the 403 embedded
controller and use the debugging features of the 403 EVB to support software development.

Users should understand hardware and software development tools, concepts, and
environments. Specifically, users should understand:
About This Book xxiii

• the host’s operating system

• the PowerPC Architecture™ and implementation-specific characteristics of the PowerPC
403GA, 403GC, or 403GCX embedded controller

• C and assembler language programming

How This Book is Organized

This book contains the following chapters and appendixes:

• Chapter 1, “Overview of the 403 EVB,” describes the product, its hardware and software
components, and its relationship with the software tools on the host.

• Chapter 2, “Host System Requirements,” lists the hardware and software requirements of
the host system.

• Chapter 3, “Installing the EVB Software,” describes the software installation on the host
system.

• Chapter 4, “Host Configuration,” describes the steps required to facilitate communications
between the host computer and the 403 EVB.

• Chapter 5, “403 EVB Connectors ,” describes the EVB connectors and the procedures for
connecting and configuring the 403 EVB hardware.

• Chapter 6, “403 EVB Hardware,” describes the hardware components and their functions
in terms of the overall organization of the 403 EVB .

• Chapter 7, “403 EVB ROM Monitor,” describes the operations of the ROM monitor.

• Chapter 8, “403 EVB Sample Applications,” contains sample applications to be built,
loaded onto the EVB, and run.

• Chapter 9, “Application Libraries and Tools,” describes the application libraries and host
tools provided with the EVB software.

• Chapter 10, “403 EVB Function Reference,” lists the OS Open functions for the 403 EVB
platform. The function calls are arranged alphabetically by function name.

• Appendix A, “Programmable Logic Equations,” lists the programming for the expansion
bus interface and for peripheral addressing.

• Appendix B, “Program Trace Calls,” describes the messages for interfacing a debugger
on the host system to the ROM monitor on the 403 EVB.

• Appendix C, “ROM Monitor Load Format,” describes the load format requirements
supported by the ROM monitor.

• Appendix D, “403 EVB Bill of Materials,” contains a list of parts used on the 403 EVB.
xxiv 403 EVB User’s Manual

Conventions Used in This Book

This book follows the numeric and highlighting notation conventions based on those used in
the RISC System/6000 and AIX publications.

Numeric Conventions

In general, numbers are used exactly as shown. Unless noted otherwise, all numbers are in
decimal, and, if entered as part of a command, are entered without format information.

In text, binary numbers are preceded by a “B” followed by the number enclosed in single
quotes, for example:

B'010'

In commands, binary numbers are preceded by “0b” or “b” followed by the number, which
may be enclosed in single quotes, for example:

0b010 or b’010’

In text, hexadecimal numbers are preceded by an “X” followed by the number enclosed in
single quotes, for example:

 X'1A7'

In commands, hexadecimal numbers are preceded by “0x” or “x” followed by the number,
which may be enclosed in single quotes, for example:

0x1a7 or x'1a7'

In text, the hexadecimal digits A through F appear in uppercase. In commands, these digits
are typically entered in lowercase.

Highlighting Conventions

This book uses the following highlighting conventions:

• The names of invariant objects known to the software appear in bold type. In
some text, however, such as in lists, no special typographic treatment is used.
Examples of such objects include:
• Function and macro names

• Data types and structures
• Constants and flags

Names of objects known to the software must be entered exactly as shown.

• Variable names supplied by user programs appear in italic type. In some text,
however, such as in lists, no special typographic treatment is used. Examples
of these objects include arguments and other parameters.

• No highlighting appears in code examples.
About This Book xxv

Syntax Diagram Conventions

Throughout this book, diagrams illustrate the syntax for string formats and commands. The
following list shows how to read these diagrams:

• Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

• A symbol begins a diagram.

• A symbol indicates continuation of a diagram on the next line.
• A symbol indicates continuation of a diagram from the previous line.
• A symbol terminates a diagram.
• Keywords are in regular type, and variables are in italics. Keywords must be

typed exactly as shown.

• Keywords or variables on the main path of a diagram are required.

• Keywords or variables shown on branches below the main path are optional.

• Keywords or variables can appear in a stack, indicating that only one item in a
stack can be chosen. If an item in a stack is on the main path, you must choose
an item from the stack. If all items in a stack are below the main path, you may
choose an item from the stack.

• For example, in the following syntax diagram, you must choose either variable1
or variable2. However, because variable3 and variable4 are below the main
path, neither is required.

• A repeat separator is a returning arrow that surrounds a syntax element or
group and shows that the element or group can be repeated.

Contacting the IBM Embedded Systems Solution Center

For information about the 403 EVB Kit and the IBM family of hardware and software
products for embedded system developers, call the IBM Embedded Systems Solution
Center at (919) 254-1810.

Please send any comments regarding this document to the following Internet address:

keyword variable1 variable2

keyword

variable1 variable2

KEYWORD variable1

variable2 variable3

variable4

KEYWORD variable1
xxvi 403 EVB User’s Manual

 ppc400pubs@vnet.ibm.com

Related Publications

Many of the following publications are included on the CD ROM that comes with the
evaluation kit. The others are available from your IBM Microelectronics representative:

• RISC System/6000 Publications

IBM RISC System/6000: POWERstation and POWERserver Hardware Technical
Information General Architectures, SA23-2643

• AIX Publications

This book refers to the following AIX publications. The words “IBM AIX Version 3.2 for
RISC System/6000” are actually part of the title of each book; however, in all references
to these books, those words are omitted.

Assembler Language Reference, SC23-2197

Commands Reference, Volume 1, SC23-2376

Commands Reference, Volume 2, SC23-2366

Commands Reference, Volume 3, SC23-2367

Commands Reference, Volume 4, SC23-2393

Editing Concepts and Procedures, GC23-2212

• Embedded Application Binary Interface (EABI) Publications

PowerPC Embedded Application Binary Interface (EABI)

System V Application Binary Interface, Third Edition, 0-13-0100439-5

System V Application Binary Interface, PowerPC Processor Supplement

• IBM High C/C++ Publications

The following list includes the books in the IBM High C/C++ library:

IBM High C/C++ Programmer’s Guide for PowerPC, 92G6920

IBM High C/C++ Language Reference for PowerPC, 92G6923

IBM ELF Assembler User’s Guide for PowerPC, 92G6921

IBM ELF Linker User’s Guide for PowerPC, 92G6922
About This Book xxvii

• OS Open Publications

The following list includes the books in the OS Open library:

IBM OS Open Programmer’s Reference, Volume 1, 92G6911

IBM OS Open Programmer’s Reference, Volume 2, 92G6912

IBM OS Open User’s Guide, 92G6897

• RISCWatch Debugger Publications

RISCWatch Debugger User’s Guide, 13H6964

• PowerPC 400Series User’s Manuals

PPC403GA Embedded Controller User’s Manual, 13H6960

PPC403GB Embedded Controller User’s Manual, 13H6985

PPC403GC Embedded Controller User’s Manual, 13H6986

PPC403GCX Embedded Controller User’s Manual

PPC401GF Embedded Controller User’s Manual, 13H6948
xxviii 403 EVB User’s Manual

1

1
Overview of the 403 EVB

This chapter introduces the hardware and software in the 403 EVB kit.

1.1 Introducing the 403 EVB Hardware Components

The 403 EVB kit contains the evaluation board with its power supply, line cord, and serial
port cables.

1.1.1 403 Evaluation Board

The 403 EVB is a full featured prototyping board which comes with the PowerPC 403GA,
403GC, or 403GCX embedded controller, 128KB of flash memory (preprogrammed with the
ROM Monitor), 4MB of DRAM, two serial ports, an Ethernet controller, and an expansion
interface connector. Two DRAM slots are provided to support up to 128MB when both slots
are populated with 64MB SIMMs.

Serial port 1 of the EVB attaches to the 403 controller, while serial port 2 connects to a
National NS16550 serial communications controller. The Ethernet controller is a National
DP83902.

Product documentation for devices other than the 403 can be obtained from the respective
manufacturers. Configuration and addressing information for all these devices is included in
the subsequent chapter on the 403 EVB hardware.

Header connectors are provided for optional test equipment such as the RISCWatch™
JTAG debugger. This tool allows non-intrusive hardware and software debug through the
403 EVB JTAG port. Connectors are provided for both the RISCWatch JTAG debugger and
for its RISCTrace™ feature. For more information on the RISCWatch JTAG tool, call the
IBM Embedded Systems Solution Center at (919) 254-1810.

1.1.2 Cables and Power Supply

The 403 EVB kit includes two serial port interface cables for connecting EVB serial ports 1
and 2 to a terminal (or terminal emulator) and to a host system, respectively.
Note: The Sun version of the EVB kit comes equipped with only one serial port cable since
the EVB-to-host connection is made over Ethernet and not the second serial port on the
EVB. The Sun version also contains a male-to-male adapter to support connectivity
between serial port 1 on the EVB and a serial port on the host.
Overview of the 403 EVB 1-1

No Ethernet cable is provided in the kit, but a standard 10Base2 (thin coax) connector and
an Ethernet controller are provided on the board to support direct Ethernet communication
with the host system.

A power supply with line cord is also provided with the 403 EVB kit.

1.2 Introducing the 403 EVB Software Support Package

The 403 EVB software support package consists of the ROM Monitor, ROM Monitor source
code, the RISCWatch source level debugger for ROM Monitor and OS Open debug modes,
the IBM OS Open real time operating system, several sample programs (including the
Dhrystone benchmark program), and application development libraries and tools. In the ELF
file format kits, the IBM High C/C++ compiler is also included.

1.2.1 ROM Monitor

The ROM Monitor program for the 403 EVB is supplied in the 128KB flash memory module
on the board. This code initializes the 403 processor and the controllers for serial and
Ethernet communications. By supporting communications with the host computer system,
the ROM Monitor provides the means to load applications from the host onto the EVB and to
debug them with the RISCWatch source level debugger.

The ROM Monitor is accessed through a terminal (or terminal emulator) attached to serial
port 1 on the EVB. The RISCWatch debugger, when in ROM Monitor mode, runs on the host
system, communicating with the ROM Monitor through serial port 2 or the Ethernet interface
on the 403 EVB.

The ROM Monitor source code is provided primarily for customers interested in developing
their own ROM versions. It is also provided so that debuggers other than RISCWatch may
be integrated with the 403 EVB. Appendix B describes the trace calls that support
communication between the RISCWatch debugger on the host and the ROM Monitor
running on the 403 EVB.

1.2.2 RISCWatch Debugger

The RISCWatch source level debugger provides a window-based debugging environment
for application programs running on the 403 EVB. The debugger can be used to load and
execute application programs on the evaluation board. Debugger installation and usage for
ROM Monitor and OS Open (non-JTAG) targets are addressed in the RISCWatch Debugger
User’s Guide included in the EVB kit. A sample debug session is included with the
debugger.
1-2 403 EVB User’s Manual

1.2.3 IBM High C/C++ Compiler

The IBM High C/C++ compiler is a globally optimizing compiler developed for the PowerPC
family of processors. It produces executable code in Extended Link Format(ELF) file format.
The version included in the software support package is a limited capacity version created
specifically for the 403 EVB kit. It supports the compilation, assembly, and linkage of the
sample application programs and the ROM Monitor source code. A full featured version of
the IBM High C/C++ compiler is available from IBM. For more information call the PowerPC
Embedded Systems Solutions Center at (919)254-1810.

1.2.4 OS Open Real-Time Operating System

OS Open is a real-time operating system (RTOS) available for the PowerPC 400 Series and
60x processors. OS Open is designed to take full advantage of the power of the IBM
PowerPC RISC processors. Also, because the OS Open environment is built in a scalable
fashion, it can be configured to meet the functional requirements and memory constraints of
a wide variety of embedded systems.

OS Open features:

• Hard real-time support, including deterministic execution, priority inheritance protocols,
and priority ceiling protocols

• Board support packages for plug-and-play operation of popular board-level products
• Support for existing American National Standards Institute (ANSI) C and emerging

POSIX standards
• Open network interfaces to support embedded systems in heterogeneous environments
• Scalable implementations to meet the requirements and constraints of a variety of

embedded systems

The version of OS Open included in the EVB software contains a limited function kernel that
limits the number of threads that can be in existence at one time. Additional details can be
found in the readme file following software installation. A full function OS Open kernel is
available from IBM. Contact the IBM Embedded Systems Solutions Center at
(919)254-1810 for additional information.

1.2.5 Dhrystone Benchmark Program

The Dhrystone benchmark is a commonly available integer benchmark. It is included as an
example program to be built, loaded onto the evaluation board, and executed. The results of
this benchmark may vary based on compiler options and the system environment in which it
is run.

1.2.6 Applic ation Tools

Several host-based tools are provided to support ROM and application development on the
403 EVB.

Overview of the 403 EVB 1-3

1-4 403 EVB User’s Manual

2

2
Host System Requirements

This chapter describes the hardware and software requirements of the host system to which
the 403 EVB is to be connected. Supported host systems include:

• an IBM RS/6000 workstation running AIX 3.2.5 (or higher)

• an IBM or compatible PC running one of the following

• Windows 3.1 (or higher) and a TCP/IP package compliant with the Microsoft
Windows Socket API definition

• Windows 95

• Windows NT 3.51

• a Sun SPARCstation 5, 10, or 20 workstation running Solaris 2.3 (or higher) or SunOS
4.1.3 (or higher)

2.1 RS/6000 Host System Requirements

Hardware requirements of the host RS/6000 computer include:

• Approximately 25MB of free disk space. This space is required for the IBM High C/C++
compiler, the 403 EVB Software Support Package, and the RISCWatch debugger. When
planning disk space usage, consider disk space requirements for AIX and any other soft-
ware packages.

• Two available serial ports, one for terminal emulation and the other for host-to-EVB com-
munications. Only one serial port is required if an Ethernet adapter is available for host-to-
EVB communications. For better performance, an Ethernet connection is strongly recom-
mended. Most RS/6000 computers come equipped with two serial ports and an Ethernet
adapter. Please consult your RS/6000 literature for more details.

• A graphics display (IBM 6091 or similar), to display debugger screens

The following software must be installed on the host RS/6000 computer to run the debugger
that communicates with the ROM Monitor on the 403 EVB:

• RISCWatch 3.4 or higher

• AIX Version 3.2.5 or higher

• AIX/Windows™ with X11R5 and Motif 1.2
Host System Requirements 2-1

AIX tools used to develop OS Open applications include:

XCOFF
• XL C or CSet++ compiler, for C and C++ programs
• as-emb, assembler for PowerPC assembler language programs
• nimgbld, binary image build tool
• AIX linker/binder, to build OS Open applications for a target system

ELF
• High C/C++ compiler for C programs
• asppc assembler for assembler and C language programs
• eimgbld, binary image build tool
• ELF linker/binder, to build OS Open applications for a target system

IBM and other vendors provide numerous optional software development tools for AIX,
including tools for:

• Computer-aided software engineering (CASE)

• Structured analysis and design

• Program understanding

• Code management and version control

2.2 PC Host System Requirements

Hardware requirements of the host PC include:

• IBM or compatible system unit. Minimum requirements: x486 DX2 50/66 MHz with 8 MB
of RAM

• VGA/SVGA Display Monitor. Minimum required: VGA 640x480. Recommended: SVGA
1024x768

• Approximately 25MB of free disk space. This space is required for the IBM High C/C++
compiler, the 403 EVB Software Support Package, and the RISCWatch debugger. When
planning disk space usage, consider disk space requirements for Windows and any other
software packages.

• Two available serial ports, one for terminal emulation and the other for SLIP host-to-EVB
communications. Since PC hardware varies greatly, you should consult your PC literature
to determine the number of serial ports available. Only one serial port is required if an
Ethernet adapter is available for host-to-EVB communications. For better performance, an
Ethernet connection is strongly recommended. Establishing an Ethernet host-to-EVB con-
nection will most likely require the installation of an Ethernet adapter card and some addi-
tional connectivity hardware since most PCs do not come equipped for Ethernet
communications. That hardware might include any or all of the following:
2-2 403 EVB User’s Manual

• For 10Base2, an Ethernet/IEEE 802.3 10Base2 network transceiver, two BNC
“T” type connectors, two terminating resistors, and a thin coaxial cable. At a
minimum, a 10Base2 point-to-point connection will require one thin coaxial
cable, two BNC “T” connectors, and two BNC terminating resistors.

The following software must be installed on the host PC to run the debugger that communi-
cates with the ROM Monitor on the 403 EVB:

• RISCWatch 3.4 or higher

• Windows 3.1 or higher, Windows 95, or Windows NT 3.51

Windows 3.1 users require a TCP/IP package compliant with the Microsoft Windows Socket
API definition. One such compatible TCP/IP package is Trumpet Winsock, a TCP/IP protocol
stack available from the www.trumpet.com Internet site. Windows 95 users who want to
establish a SLIP host-to-EVB connection over a second serial port, require Trumpet
Winsock as well, since the TCP/IP package that comes with Windows 95 does not support
SLIP communications. Appropriate installation documentation can be found at the Trumpet
site. Users should refer to the documentation for the terms and conditions of using Trumpet
Winsock. Information regarding the setup and use of Trumpet Winsock can be found in the
subsequent chapter on “Host Configuration”.

Note : Trumpet is not recommended for Windows 95 users already connected to a network
since installing Trumpet may cause problems with previously defined networks. If the
recommended Ethernet host-to-EVB connection is going to be used (instead of the SLIP
host-to-EVB connection), Windows 95 users do not need to install Trumpet since the
TCP/IP package that comes with Windows 95 can be used to establish the Ethernet
connection.

2.3 SUN Host System Requirements

Hardware requirements of the host Sun workstation include:

• Approximately 25MB of free disk space. This space is required for the IBM High C/C++
compiler, the 403 EVB Software Support Package, and the RISCWatch debugger. When
planning disk space usage, consider disk space requirements for the operating system
and any other software packages.

• An available serial port for terminal emulation and an Ethernet (Attachment Unit Interface
(AUI) or RJ-45) port for host-to-EVB communications. Most Sun SPARCstations come
equipped with one serial port and an Ethernet (AUI) port. Consult your Sun literature for
additional details.

• Any or all of the following hardware to establish an Ethernet connection between the EVB
and the host:
Host System Requirements 2-3

• For 10Base2, an AUI (or thick Ethernet) adapter cable (or an AUI/Audio
Adapter cable depending on your SPARCstation model and options - both are
available from Sun), Ethernet/IEEE 802.3 10Base2 network transceiver, two
BNC “T” type connectors, two terminating resistors, and a thin coaxial cable. At
a minimum, a 10Base2 point-to-point connection will require one thin coaxial
cable, two BNC “T” connectors, and two BNC terminating resistors

• Consult your hardware documentation for additional information.

• A graphics display to display debugger screens

The following software must be installed on the Sun workstation to run the debugger that
communicates with the ROM Monitor on the EVB:

• RISCWatch 3.4 or higher

• SunOS 4.1.3 (or higher) or Solaris 2.3 (or higher)

• OpenWindows 3.0 (SunOS 4.1.3) or 3.3 (Solaris 2.3)
2-4 403 EVB User’s Manual

3

3
Installing the EVB Software

This chapter describes the procedures for installing the EVB software on the host system.
Details of the software, its directories and their contents, are also given. Please refer to the
section corresponding to your host system.

3.1 RS/6000 Installation (ELF and XCOFF file formats)

3.1.1 EVB Software Support Package Installation - RS/6000

The software support package is installed from diskettes on an AIX host system using the
system management interface tool (smit).

Before beginning the installation, you must have:

• EVB for RS/6000 installation diskettes
• RISC System/6000, running AIX Version 3.2.5 or higher

• Superuser privileges on the AIX system

The method used to perform Steps 7 through 20 of the installation procedure depends on
your version of smit . To select options, use the appropriate method for your version:

• In the X Window version, position the cursor and make selections using the
mouse.

• In the character-based version, position the cursor using arrow keys and make
selections using function keys.

The following procedure installs the EVB software support package:

 1. Log in as root or use the AIX su command to become the superuser.

 2. Use a cd command to change to the directory where the install image file will be stored.

Typically, the directory /usr/sys/inst.images holds install image files. However, any
directory can be used.

 3. Insert the EVB installation diskette labeled “1 of n” (n may vary) into the diskette drive.

 4. Run the following restore command to read the file EVB.instal.Z from the diskette into
the working directory:

restore –f/dev/rfd0
Installing the EVB Software 3-1

 5. Insert the rest of the EVB installation diskettes into the diskette drive when prompted.

 6. After the diskettes are read, unpack the file:

uncompress EVB.instal.Z

 7. Run the following command to begin the installation via smit :

smit install_latest

 8. Type the fully qualified path name of the file EVB.instal into the Input device/directory
for software field.

The path includes the directory selected in Step 2, for example,
/usr/sys/inst.images/EVB.instal .

 9. Press Enter .

 10. Position the cursor on the Software to install line.

 11. Select the list button (X Window version) or the F4=List function key (character-based
version) to display a list of available software.

 12. From the list, select the item or items appropriate for your platform and application.

• To install the IBM High C/C++ Compiler, select the highc base item (ELF file
format version only).

• To install the complete OS Open distribution, select both the OS Open base
and the OS Open platform specific items.

 13. Select OK to complete the selection process and return to the Install Software
Products at Latest Available Level window.

 14. Ensure that the response for Automatically install PREREQUISITE software is “no ”.

For systems running AIX 4 or later, this field is called AUTOMATICALLY install requisite
software.

 15. Ensure that the response for OVERWRITE existing version is “yes”.

For systems runnig AIX 4 or later, this field is called OVERWRITE same or newer
versions.

 16. Ensure that the response for COMMIT Software is “yes ”.

For systems running AIX 4 or later, this field is called COMMIT software updates .

 17. Begin the installation by selecting Do or OK.

 18. Select OK at the ARE YOU SURE? screen to continue the installation.

 19. When the Command status is OK, file installation is complete.

 20. Exit smit .
3-2 403 EVB User’s Manual

The IBM High C/C++ Compiler is installed in the /usr/highcppc directory tree and the EVB
software support package in the /usr/osopen directory tree. It may be necessary to change
ownership of these directories, their subdirectories and their contents if other users will
require access to them. The /usr/highcppc/bin directory contains the files required for the
IBM High C/C++ Compiler. Those files include:

• asppc - Assembler for assembler language programs
• ldppc - ELF linker/binder to build applications to be run on the EVB
• hcppc - High C/C++ compiler for C programs
• arppc - ELF library archiver

The readme file under the /usr/highcppc directory contains the latest information regarding
the compiler and should be considered “must reading”.

If you installed the compiler into a directory other than /usr/highcppc , edit the
bin/hcppc.cnf file, and locate the line near the top of the file that reads
HCDIR=/usr/highcppc . Change this to reflect the directory that the compiler was installed
into. Save your changes and exit the editor.

The /usr/osopen directory tree contains the files and tools that support OS Open
application and ROM development. The /usr/osopen subdirectories and their contents are
as follows:

• /bin

This directory contains several host based utilities used for application and ROM program
development.
• elf2rom - creates a ROM image from an ELF executable file
• eimgbld - creates a ROM Monitor loadable image from an ELF executable file
• hbranch - places an absolute branch in the last address of a ROM image
• nimgbld - creates a ROM Monitor loadable image from an Xcoff executable file.
• rambuild - creates an assembler source file that contains the files found in a specified

directory
• tracefmt - post-processes OS Open trace snapshots for AIX 3.2.X
• trc41 - post-processes OS Open trace snapshots for AIX 4.1

• /examples

This directory contains many example OS Open programs.

• /PLATFORM

This directory contains the OS Open platform specific code for the platform included in your
EVB kit. The directory is not literally named “PLATFORM”, but rather is named to identify the
board and processor that was shipped with your kit. For example, if your platform was the
403GA evaluation board, this directory might be named m403_evb.

• README.TXT - contains the latest information regarding this release
• /include - contains OS Open include files
Installing the EVB Software 3-3

• /ld - contains dynamically loadable modules that can be run from OS Open’s OpenShell
• /lib - contains OS Open libraries
• /m4 - contains assembler preprocessor include files
• /openbios - contains the source code for the ROM Monitor (detailed in a later chapter)
• /samples - contains samples programs that can be compiled and run

Considerable effort goes into providing a quality product with consistent documentation. To
insure that our customers have the advantage of the latest software features and updated
information, README.TXT may contain clarifications and/or additional information and
should be considered “must reading”.

• /COMMENT.USR and COMMENT.DOC

Please take the time to complete these user comment forms. Your feedback and
suggestions will help us to improve our products and technical publications. Fax and email
instructions are included in each of the files.

3.1.2 RISCWatch Debugger Installation - RS/6000

Please refer to the RISCWatch Debugger User’s Guide for debugger installation
instructions. Be sure to follow the instructions for RS/6000 installation.

3.2 PC Installation (ELF file format version only)

3.2.1 EVB Software Support Package Installation - PC

Before beginning the installation, you must have:

• EVB for PC installation diskettes
• PC running Windows 3.1 or higher, Windows 95, or Windows NT 3.51

The following procedure installs the EVB software support package:

NOTE: For Windows NT users, we recommend that you logon as “root”.

 1. Insert the installation diskette labeled “EVB - PC” and “1 of n” (n may vary) into diskette
drive A:

 2. Start Microsoft Windows if it is not active

 3. Select Run... from the File pull-down of Program Manager or from the Start menu for
Win95/NT

 4. Type ‘A:INSTALL’ to run the installation program

 5. Follow the installation program instructions
3-4 403 EVB User’s Manual

Once completed, the IBM High C/C++ Compiler is installed in the \highcppc directory tree
and the EVB software support package in the \osopen directory tree. The \highcppc\bin
directory contains the files required for the IBM High C/C++ Compiler. Those files include:

• asppc.exe - Assembler for assembler language programs
• ldppc.exe - ELF linker/binder to build applications to be run on the EVB
• hcppc.exe - High C/C++ compiler for C programs
• arppc.exe - ELF library archiver

The readme file under the \highcppc directory contains the latest information regarding the
compiler and should be considered “must reading”.

The \osopen directory tree contains the files and tools that support OS Open application
and ROM development. The \osopen subdirectories and their contents are as follows:

• \bin

This directory contains several host based utilities used for application and ROM program
development.
• elf2rom.exe - creates a ROM image from an ELF file
• eimgbld.exe - creates a ROM Monitor loadable image from an ELF executable file
• hbranch.exe - places an absolute branch in the last address of a ROM image
• rambuild.exe - creates an assembler source file that contains the files found in a speci-

fied directory
• make.exe - supports the use of makefiles when building application programs
• bootpd.exe - bootp server to support ROM Monitor downlaods
• tftpd.exe - tftp server to support host-to-EVB file transfers

• \examples

This directory contains many example OS Open programs.

• \PLATFORM

This directory contains the OS Open platform specific code for the platform included in your
EVB kit. The directory is not literally named “PLATFORM”, but rather is named to identify the
board and processor that was shipped with your kit. For example, if your platform was the
403GA evaluation board, this directory might be named m403_evb.

• README.TXT - contains the latest information regarding this release
• \include - contains OS Open include files
• \ld - contains dynamically loadable modules that can be run from OS Open’s OpenShell
• \lib - contains OS Open libraries
• \m4 - contains assembler preprocessor include files
• \openbios - contains the source code for the ROM Monitor (detailed in a later chapter)
• \samples - contains samples programs that can be compiled and run
Installing the EVB Software 3-5

Considerable effort goes into providing a quality product with consistent documentation. To
insure that our customers have the advantage of the latest software features and updated
information, README.TXT may contain clarifications and/or additional information and
should be considered “must reading”.

• \COMMENT.USER and \COMMENT.DOC

Please take the time to complete these user comment forms. Your feedback and
suggestions will help us to improve our products and technical publications. Fax and email
instructions are included in each of the files.

3.2.2 RISCWatch Debugger Installation - PC

Please refer to the RISCWatch Debugger User’s Guide for debugger installation
instructions. Be sure to follow the instructions for PC installation.

3.3 Sun Installation(ELF file format version only)

3.3.1 EVB Software Support Package Installation - Sun

The software support package is installed from diskettes on a Sun host system using the
cpio and tar commands.

Before beginning the installation, you must have:

• EVB for Sun installation diskettes

• a Sun SPARCstation 5. 10, or 20 workstation running SunOS 4.1.3 (or higher)
or Solaris 2.3 (or higher)

• Superuser privileges on the Sun system

The procedures required for installing the EVB software support package vary depending on
the operating system being used. Please follow the instructions corresponding to your
operating system.

 1. Log in as root or use the su command to become the superuser

 2. Open at least two windows for this procedure

 3. Use the cd command to change to the /usr directory

 4. Insert the installation diskette labeled “EVB - Sun” and “1 of n” (n may vary) into the
diskette drive.
3-6 403 EVB User’s Manual

Instructions for SunOS 4.1.3 (or higher) only:

 5. From the second window run the command:

cpio -ivB EVB _os4.tar.Z EVB.tar.Z EVB_hcppc.tar.Z < /dev/rfd0

where /dev/rfd0 is the name of your diskette device.

 6. When the system prompts you for a new volume, move to the first window and type eject
to eject the diskette. Insert the next diskette.

 7. Move to the second window and type the name of the diskette drive (/dev/rfd0) to
continue the process.

 8. If prompted for more diskettes, repeat the previous two steps. When finished, type eject
to remove the final diskette.

 9. Return to the first window and verify that the following files are installed under the /usr
directory:

EVB.tar.Z

EVB_os4.tar.Z

EVB_hcppc.tar.Z

 10. Run the following commands to unpack and install the files (order is important):

zcat EVB.tar.Z | tar xvf -

zcat EVB_os4.tar.Z | tar xvf -

zcat EVB_hcppc.tar.Z | tar xvf -

Installation for SunOS is complete. The tar.Z files may be removed to recover space.

Instructions for Solaris 2.3 (or higher) only:

 11. From the first window type volcheck. This creates a file called
/vol/dev/rdiskette0/unlabeled (the diskette device name).

If the system pops up a message box saying the diskette format is unrecognized, ignore
the message and cancel the message box. The name of the file created may be
different on your system. You can use the eject -q command to see the actual name.
The file name returned is the name that should be used in the subsequent steps.

 12. From the second window run the command:

cpio -ivB EVB. tar.Z EVB_hcppc.tar.Z < /vol/dev/rdiskette0/unlabeled

where /voldev/rdiskette0/unlabeled is the name of your diskette device.
Installing the EVB Software 3-7

 13. When the system prompts you for a new volume, move to the first window. Type eject if
the system did not automatically eject the diskette. Insert the next diskette and type
volcheck .

 14. Move to the second window and type the name of the diskette drive
(/vol/dev/rdiskette0/unlabeled) to continue the pr ocess .

 15. If prompted for more diskettes, repeat the previous two steps. When finished, type eject
to remove the final diskette.

 16. Return to the first window and verify that the following files are installed under the /usr
directory:

EVB.tar.Z

EVB_hcppc.tar.Z

 17. Run the following commands to unpack and install the files:

zcat EVB.tar.Z | tar xvf -

zcat EVB_hcppc.tar.Z | tar xvf -

Installation for Solaris is complete. The tar.Z files may be removed to recover space.

The IBM High C/C++ Compiler is installed in the /usr/highcppc directory tree and the EVB
software support package in the /usr/osopen directory tree. It may be necessary to change
ownership of these directories, their subdirectories and their contents if other users will
require access to them. The /usr/highcppc/bin directory contains the files required for the
IBM High C/C++ Compiler. Those files include:

• asppc - Assembler for assembler language programs
• ldppc - ELF linker/binder to build applications to be run on the EVB
• hcppc - High C/C++ compiler for C programs
• arppc - ELF library archiver

The readme file under the /usr/highcppc directory contains the latest information regarding
the compiler and should be considered “must reading”.

If you installed the compiler into a directory other than /usr/highcppc , edit the
bin/hcppc.cnf file, and locate the line near the top of the file that reads
HCDIR=/usr/highcppc . Change this to reflect the directory that the compiler was installed
into. Save your changes and exit the editor.

The /usr/osopen directory tree contains the files and tools that support OS Open
application and ROM development. The /usr/osopen subdirectories and their contents are
as follows:

• /bin

This directory contains several host based utilities used for application and ROM program
3-8 403 EVB User’s Manual

development.
• elf2rom - creates a ROM image from an ELF file
• eimgbld - creates a ROM Monitor loadable image from an ELF executable file
• hbranch - places an absolute branch in the last address of a ROM image
• rambuild - creates an assembler source file that contains the files found in a specified

directory
• bootpd - bootp server to support ROM Monitor downlaods

• /examples

This directory contains many example OS Open programs.

• /PLATFORM

This directory contains the OS Open platform specific code for the platform included in your
EVB kit. The directory is not literally named “PLATFORM”, but rather is named to identify the
board and processor that was shipped with your kit. For example, if your platform was the
403GA evaluation board, this directory might be named m403_evb.

• README.TXT - contains the latest information regarding this release
• /include - contains OS Open include files
• /ld - contains dynamically loadable modules that can be run from OS Open’s OpenShell
• /lib - contains OS Open libraries
• /m4 - contains assembler preprocessor include files
• /openbios - contains the source code for the ROM Monitor (detailed in a later chapter)
• /samples - contains samples programs that can be compiled and run

Considerable effort goes into providing a quality product with consistent documentation. To
insure that our customers have the advantage of the latest software features and updated
information, README.TXT may contain clarifications and/or additional information and
should be considered “must reading”.

• /COMMENT.USER and /COMMENT.DOC

Please take the time to complete these user comment forms. Your feedback and
suggestions will help us to improve our products and technical publications. Fax and email
instructions are included in each of the files.

3.3.2 RISCWatch Debugger Installation - Sun

Please refer to the RISCWatch Debugger User’s Guide for debugger installation
instructions. Be sure to follow the instructions for Sun installation.
Installing the EVB Software 3-9

3-10 403 EVB User’s Manual

4

4
Host Configuration

Several host configuration steps are required to facilitate communications between the host
computer and the evaluation board. These steps are outlined in this chapter. Please refer to
the section corresponding to your host system.

4.1 RS/6000 Host Configuration

RS/6000 configuration requires that you be the superuser of the host workstation. This is
accomplished by logging in as root or by using the AIX su command to become the
superuser.

4.1.1 Serial Port Setup - RS/6000

The RS/6000 includes two serial ports to support communications via asynchronous data
transfer. These ports are labeled S1 and S2 on the back of the RS/6000’s system unit.
When properly configured, one serial port can be used to connect a terminal emulator
running on the host to the ROM Monitor running on the EVB, and the other to provide a
Serial Line Internet Protocol (or SLIP) network interface between the host and the EVB to
download applications. This section addresses the proper configuration of the S1 and S2
serial ports to support these connections. Details on setting up the terminal emulator are
discussed in a later chapter. In this section, S1 and S2 refer to the respective serial ports on
the host RS/6000, and SP1 and SP2 to the respective serial ports on the EVB.

The connection of the terminal emulator running on the host to the ROM Monitor running on
the EVB, is made through the S1 serial port on the RS/6000 and the SP1 serial port on the
EVB. A connection between the S2 serial port on the host and the SP2 serial port on the
EVB, provides a SLIP network interface to download application programs from the host to
the EVB. If the recommended Ethernet connection is going to be used, the S2-to-SP2 SLIP
connection is optional and does not need to be established.

Proper setup involves the configuration of tty devices for both the S1 and S2 serial ports on
the host. tty0 is used for the terminal emulator-to-ROM Monitor connection and tty1 for the
host-to-EVB SLIP connection. It is also necessary to establish a SLIP network interface
between S2 on the host and SP2 on the EVB. The following steps should be taken to insure
proper S1, S2 configuration:

 1. Log in as root or the superuser (su)
Host Configuration 4-1

 2. Determine if the tty0, tty1 devices already exist

• enter smit

• select Devices

• select TTY

• select List All Defined TTYs

Perform step 3 for each tty not listed.

Perform step 4 for each tty listed to insure that it is properly configured.

 3. To add a tty device

• return to the TTY screen

• select Add a TTY

• select tty rs232 Asynchronous Ter minal

• select sa0 - Serial Port 1 (for ROM Monitor connection) when adding tty0

 OR sa1 - Serial Port 2 (for EVB SLIP connection) when adding tty1

• select s1 for the port number when adding tty0
• OR s2 for the port number when adding tty1

• insure that the BAUD rate is 9600 when adding tty0

 OR that the BAUD rate is 38400 when adding tty1

• insure that the PARITY is none

• insure that the BITS per character is 8
• insure that the Number of STOP BITS is 1
• insure that Enable LOGIN is disabled

The default settings for all the other fields are satisfactory.

• select Do or hit Enter

Upon successful completion, a properly configured tty device is created and
thus, step 4 can be skipped for the particular tty (tty0 or tty1) added.
Remember to repeat this step, step 3, if both tty0 and tty1 needed to be added.

 4. To properly configure a previously defined tty device

For systems running AIX 3 :

• return to the TTY screen

• select Change / Show Characteristics of a TTY

• select tty# (where # = 0 or 1)
• select Change / Show TTY Program

• insure that the following fields are set to the indicated values:
4-2 403 EVB User’s Manual

 TTY tty# (#=0 for tty0, 1 for tty1)
 TTY type tty
 TTY interface rs232
 Description Asynchronous Terminal
 Status Available
 Location 00-00-S*-00 (*=1 for tty0, 2 for tty1)
 Parent Adapter sa# (#=0 for tty0, 1 for tty1)
 Port Number s* (*=1 for tty0, 2 for tty1)
 Terminal Type dumb
 Enable LOGIN disable

The other fields can remain at their default values.

• select Do or hit Enter

• upon successful completion, select Done or hit PF3 to return to the TTY screen
• select Change / Show Characteristics of a TTY

• select tty# (where # = 0 or 1)
• select Change/Show HARDWARE TTY Characteristics

• insure that the BAUD rate is 9600 for tty0

 OR that the BAUD rate is 38400 for tty1

• insure that the PARITY is none

• insure that the BITS per character is 8
• insure that the Number of STOP BITS is 1
• select Do or hit Enter

Upon successful completion, the tty device is properly configured.

For systems running AIX 4 or later :

• return to the TTY screen
• select Change / Show Characteristics of a TTY

• select tty# (where # = 0 or 1)

• insure that the following fields are set to the indicated values:

 TTY tty# (#=0 for tty0, 1 for tty1)
 TTY type tty
 TTY interface rs232
 Description Asynchronous Terminal
 Status Available
 Location 00-00-S*-00 (*=1 for tty0, 2 for tty1)
 Parent Adapter sa# (#=0 for tty0, 1 for tty1)
 Port Number s* (*=1 for tty0, 2 for tty1)
 Terminal Type dumb
 Enable LOGIN disable
Host Configuration 4-3

• insure that the BAUD rate is 9600 for tty0

 OR that the BAUD rate is 38400 for tty1

• insure that the PARITY is none

• insure that the BITS per character is 8
• insure that the Number of STOP BITS is 1

The other fields can remain at their default values.

• select Do or hit Enter

Upon successful completion, the tty device is properly configured.

 5. This last step establishes the SLIP network over the tty1 device between the host and
the EVB. It’s optional for those using the recommended Ethernet connection for host-to-
EVB communications. This step is not required for tty0 since it is being used simply for
terminal emulation. Unlike a LAN interface, a SLIP connection is point to point. We first
need to specify an IP address for the host and then an IP address for the other end of
the SLIP connection, which in this case, is the evaluation board. To do this:

• enter smit

• select Communication Applications and Services

• select TCP/IP

• select Further Configuration

• select Network Interfaces

• select Network Interface Selection

• select Add a Network Interface

• select Add a Serial Line INTERNET Network Interfac e

• select tty1

• set the INTERNET ADDRESS field to the host IP address. An acceptable value
would be 8.1.1.4

• set the DESTINATION Address field to the evaluation board’s IP address. An
acceptable value would be 8.1.1.5

Make a note of the addresses selected for the host and the evaluation board.
They will be needed later.

• set the Network MASK to 255.255.240.0

• insure that ACTIVATE is yes

• insure that the TTY PORT is tty1

• leave the BAUD RATE field blank
• leave the DIAL STRING field blank
4-4 403 EVB User’s Manual

• select Do or hit Enter

Upon successful completion, the SLIP Network Interface is established over
tty1 and the serial port setup is complete.

If this step fails, insure that a SLIP Network has not already been defined over
tty1 . To make this check, return to the Network Interface Selection screen in
smit and select List All Network Interfaces . If sl1 is listed then a network
interface has already been defined for tty1 and its characteristics may need to
be changed. Return to the Network Interface Selection screen and select
Change/Show Character istics of a Network Interface . Select sl1 and insure
that the fields are set as stated previously in this step. (Note - there is no need
to change the IP addresses in the INTERNET ADRRESS and DESTINATION
Adress fields if they have already been defined, but use of the above
mentioned IP addresses is strongly recommended to maintain consistency with
the rest of the documentation.) Make a note of the IP addresses chosen since
they will be needed later during board setup.

4.1.2 Ethernet Setup - RS/6000
In addition to (or in place of) the SLIP connection, an Ethernet connection can be used for
host-to-EVB communications. The Ethernet connection is made through an Ethernet
adapter on the host and the 10Base2 connector on the EVB. Ethernet is much faster than
SLIP and is recommended when downloading large applications on to the board or when
using the RISCWatch debugger.
An Ethernet connection may require additional hardware. The 403 EVB supports connection
via Standard Ethernet, thin coax (10Base2).
A 10Base2 connection requires at least a thin coaxial cable and a BNC “T” connector when
the EVB is added to an existing network. If the EVB is at one of the ends of the Ethernet
network, a terminating resistor is also required. If the Ethernet network is exclusive between
the host and the EVB, a thin coaxial cable, two BNC “T” connectors, and two BNC
terminators are required.

Other hardware required will depend on the type of Ethernet adapter you have on your
RS/6000 and whether the board is being connected to an existing Ethernet network. AIX
Communications Concepts and Procedures (GC23-2203, two volumes) has additional
information about the management and configuration of a TCP/IP network, including
specifics as to how to configure an Ethernet network interface. Some of the basic steps are
outlined below. You should consult your network administrator before attempting ethernet
setup.

 1. The host must be equipped to participate in a 10Base2 Ethernet network. This may
require the installation of an Ethernet adapter card for your specific RS/6000 model and,
as discussed previously, additional connectivity hardware. Consult the documentation
included with the hardware for installation instructions. Most RS/6000 models come with
Ethernet adapters already installed. They are labeled ET in the back of the RS/6000
system unit.
Host Configuration 4-5

 2. Assuming the host system is equipped with the appropriate Ethernet adapter, the
Ethernet interface must be configured properly. To do this:

• log in as root or the superuser (su)
• enter smit

• select Communication Applications and Services

• select TCP/IP

• select Further Configuration

• select Network Interfaces

• select Network Interface Selection

• select Add a Network Interface

• select Add a Standard Ethernet Network Interface

Note - choose “Standard Ethernet ” as opposed to “IEEE 802.3 Ethernet”. If you
receive an error message stating that there is “No available adapter”, go to step
3 and skip the remaining items in this step, step 2.

• select en0

• set the INTERNET ADDRESS field to the host IP address. This value must be
different from that used for the SLIP interface. It can be set to any convenient
value if the Ethernet network is private for 403 EVB development purposes. An
acceptable value would be 7.1.1.4

Make a note of the IP address selected for the host system. It will be needed
later. Note that an IP address for the evaluation board is not required as it was
for the point-to-point SLIP network interface. An IP address for the EVB will,
however, be required later on for the board setup.

• set the Network MASK field to 255.255.240.0

• insure that ACTIVATE is yes

• insure that the Use Address Resolution Protocol is yes
• leave the BROADCAST ADDRESS blank
• select Do or hit Enter

Upon successful completion, a properly configured Ethernet interface has been
added. The Ethernet setup is complete and step 3 need not be performed.

 3. Perform this step only if you received the “No available adapter” error message when
trying to Add a Standard Ethernet Network Interface in step 2. This message indicates
that either the Ethernet adapter is missing (or possibly misplugged) or the Ethernet
Network Interface already exists. To determine if the interface already exists:

• return to the Network Interface Selection screen in smit
4-6 403 EVB User’s Manual

• select Change/Show Characterist ics of a Network Interface

If en0 is not listed, insure that the RS/6000 host does have an Ethernet adapter
and, if possible, that it is plugged correctly. If the adapter was misplugged,
repeat step 2 to add the Ethernet Network Interface.

if en0 is listed, then the Ethernet Network Interface already exists. Select en0
and note the IP address listed for the INTERNET ADDRESS field. This value is
the host’s Ethernet IP address and will be needed later. If no IP address is
listed, choose one. The IP address 7.1.1.4 can be used to maintain
consistency with the menus and examples in this document. The Ethernet
setup is complete.

4.1.3 ROM Monitor-Debugger Communication Setup - RS/6000

Before the RISCWatch Debugger can be used, some additional steps need to be taken to
establish ROM Monitor-Debugger communications. These steps involve an update of the
TCP/IP services file and a refresh of the TCP/IP inetd daemon.

To modify the /etc/services file, you need to log in as root or the superuser (su). The
following lines must be added to the file:

 osopen-dbg 20044/tcp # for RISCWatch OS Open debug
 osopen-dbg 20044/udp # for RISCWatch rom_mon debug

The AIX refresh -s inetd command must then be run to inform the inetd daemon of the
changes made to the /etc/services file.

4.2 PC Host Configuration

As stated previously, PC users are required to have a TCP/IP package compliant with the
Microsoft Windows Socket API definition. Unlike Windows 95 and Windows NT, Windows
3.1 does not include such a package. To determine if you will need to install a TCP/IP
package on Windows 3.1, do the following:

• Select the Main icon from the Windows’ Program Manager.
• Select the File Manager icon.
• Select File from the menu bar and choose Search .
• Perform a search for winsock.dll on your entire hard drive.

If the winsock.dll file exists, you probably have some compliant TCP/IP package already
installed. Workgroup for Windows is a product that provides such a TCP/IP package. If the
winsock.dll file does not exist, you need to install a TCP/IP package compliant with the
Microsoft Windows Socket API definition. One such package, Trumpet Winsock, can be
downloaded from the following Internet site: www.trumpet.com .
Host Configuration 4-7

Note: Windows 95 users who want to establish a SLIP host-to-EVB connection over a
second serial port, require Trumpet Winsock as well, since the TCP/IP package that comes
with Windows 95 does not support SLIP communications. Trumpet is not recommended for
Windows 95 users already connected to a network since installing Trumpet may cause
problems with previously defined networks. If the recommended Ethernet host-to-EVB
connection is going to be used (instead of the SLIP host-to-EVB connection), Windows 95
users do not need to install Trumpet since the TCP/IP package that comes with Windows
95 can be used to establish the Ethernet connection.

The following information is provided as a guide to installing the Trumpet Winsock code. It
is not meant to be a replacement to the installation instructions contained at the Trumpet
Internet site. It is provided to help clarify items which may be confusing.

1. Go to the Trumpet Software International's web site (http://www.trumpet.com)
and find the installation information for Trumpet Winsock. You want to download
the latest version which can be used for Windows 3.1 (must have 16 bit sup-
port). For example, version 3.0 (file twsk30c.exe) is a combined 16 bit/Windows
95 release. This version can be downloaded and used for an evaluation period
of 30 days. Use beyond the evaluation period requires a purchase.

2. The downloaded version is usually a single file called a self extracting ZIP file
(has an extension *.exe). This file should be installed in a new directory
(c:\trumpet, for example) and then executed. Execution is accomplished by
going to the newly created directory and entering the name of the file. This will
result in the creation of many more files in the new directory.

3. Read any ‘README ’ files carefully. Ethernet users are interested in directions
concerning Packet Drivers because you will not be using a modem and you
have already determined that a TCP/IP package does not exist on your system.

4. If the readme file does not direct you to do otherwise, execute 'install.exe' to
start the installation process. You will be prompted for any required informa-
tion. Note that you may be informed that a search will be done to rename any
'winsock.dll ' files found. If you performed this check earlier, this file should not
be found anywhere else on your hard drive.

5. If a 'setup' screen appears, you can defer entering any fields until a later time.

6. When installation is complete, reboot the system, and bring up Windows.

4.2.1 Serial Port Setup

Most PCs include two serial ports to support communications via asynchronous data
transfer. These ports are sometimes referred to as communication or COM ports. These
ports are usually accessed from the back of the system unit. This document refers to them
as serial ports S1 and S2. You should consult your PC literature to determine how many
serial ports are available on your unit and where they are located.
4-8 403 EVB User’s Manual

When properly configured, one serial port can be used to connect a terminal emulator
running on the host to the ROM Monitor running on the EVB, and the other to provide a
Serial Line Internet Protocol (or SLIP) network interface between the host and the EVB to
download applications. The SLIP host-to-EVB connection is optional if the recommended
Ethernet connection is going to be used for host-to-EVB communications. This section
addresses the proper configuration of the S1 and S2 serial ports to support these
connections. Users should also refer to the Windows on-line help for “Changing Serial Port
Settings”.

The connection of the terminal emulator running on the host to the ROM Monitor running on
the EVB, is made through the S1 serial port on the PC and the SP1 serial port on the EVB.
The S1 port must be configured for a baud rate of 9600, 8 data bits, 1 stop bit, and no parity.
The proper setting of these parameters is discussed later in the section on terminal
emulation.

A connection between the S2 serial port on the host and the SP2 serial port on the EVB,
provides a SLIP network interface to download application programs from the host to the
EVB. This connection can be used in place of or along with the recommended Ethernet
connection.

To establish a SLIP network over the S2 serial port for host-to-EVB communications, define
a SLIP interface via the TCP/IP package being used. Since TCP/IP packages for PCs vary,
users should consult their TCP/IP literature or their system administrator on how to establish
the SLIP interface between the host and the EVB. The following IP addresses are suggested
for the SLIP interface:

• PC host (source) : 8.1.1.4

• Board (destination) : 8.1.1.5

Make a note of the IP addresses selected since they will be needed later.

Trumpet Winsock users can use the following steps as a guide to establishing the SLIP
interface:

1. Open the Trumpet Winsock by double clicking on the Trumpet Winsock icon in
the Trumpet Winsock Files program group.

2. If setup was bypassed during installation, your connection should fail. A Trum-
pet Winsock window comes up indicating your connection status. Select
Setup from the File menu to open the Setup dialog.

3. Set the IP address field to the IP address of the PC host: 8.1.1.4 is suggested
to maintain consistency with this document.

4. Select SLIP under Drivers and then go to Dialler settings .

5. Select the appropriate COMM port (COM2 for example) to be used for SLIP
communications.

6. Set the Baud rate to 38400.
Host Configuration 4-9

7. Disable Hardware handshaking and make sure No automatic login is selected.
Use the default settings for the remaining options and/or check the help for
more details.

8. Select OK from Dialler Sett ings and then OK from Setup .

9. Edit the hosts file found in the installed Trumpet directory to include both the
PC host IP address and the board IP address. For example:

 8.1.1.4 local_slip
 8.1.1.5 evb_slip

After entering all the information, you may need to restart Trumpet Winsock for the network
setup to take effect.

Prior to exiting Windows, we recommend terminating Trumpet Winsock (close the
application). If you do not follow this recommendation, subsequent Trumpet starts may fail.
If this occurs, you will need to reboot your system.

4.2.2 Ethernet Setup - PC

In addition to (or in place of) the SLIP connection, an Ethernet connection can be used for
host-to-EVB communications. The Ethernet connection is made through an Ethernet
adapter on the host and the 10Base2 connector on the EVB. Ethernet is much faster than
SLIP and is recommended when downloading large applications on to the board or when
using the RISCWatch debugger.

An Ethernet connection requires additional hardware. The 403 EVB supports connection via
Standard Ethernet, thin coax (10Base2). This connection requires that the host PC be
equipped with an appropriate Ethernet adapter. The host adapter is not included in the EVB
kit. Please consult your PC and adapter documentation for requirements and installation
instructions.

A 10Base2 connection requires at least a thin coaxial cable and a BNC “T” connector when
the EVB is added to an existing network. If the EVB is at one of the ends of the Ethernet
network, a terminating resistor is also required. If the Ethernet network is exclusive between
the host and the EVB, a thin coaxial cable, two BNC “T” connectors, and two BNC
terminators are required.

Other hardware required will depend on the type of Ethernet adapter you have on your PC
and whether the board is being connected to an existing Ethernet network. Please consult
the documentation included with the adapter hardware for additional instructions.

Since TCP/IP packages for PCs vary, users should consult their TCP/IP documentation for
information regarding the management and configuration of an Ethernet network interface.
Establishment of an ethernet interface requires a host IP address. If the host PC is
connected to an existing ethernet network, the host IP address should already be defined.
Consult your network administrator on how to obtain the host’s ethernet IP address and how
to add the EVB to the existing network.
4-10 403 EVB User’s Manual

To maintain consistency with this document, the following IP addresses are suggested for
the Ethernet interface :

• PC host (source) : 7.1.1.4

• Board (destination) : 7.1.1.5

Make a note of the IP addresses selected since they will be needed later.

4.2.2.1 Windows 3.1

Trumpet Winsock users can use the following steps as a guide to establishing a local
Ethernet interface:

1. Trumpet Software International provides software which works with 'packet
drivers'. When you first install your ethernet card, a set of different device driv-
ers are provided. In order to use Trumpet Winsock, you will need to select a
'Packet Driver'. The Kingston ethernet card, provided with some RISCWatch
packages, contains a packet driver that can be selected. If you buy an ethernet
card that does not contain a packet driver, you can use the help option on the
Trumpet menu bar to find out how you may be able to obtain a packet driver
from the Internet. We will assume you have already followed the instructions for
installing your ethernet card, have installed Trumpet Winsock, and have chosen
a packet driver for use with Trumpet.

2. Read any ‘README’ files carefully. Pay particular attention to any directions
concerning Packet Drivers.

3. Follow the instructions for Using the Trumpet Winsock over a packet driver
from the main Trumpet Help window. Follow the instructions for Installing a
packet driver and WI NPKT. At the time of this publication, the WINPKT pro-
gram needed to be extracted from 'ftp://ftp.trumpet.com/winsock/winpkt.com'.
The ndis3pkt package, referred in the help as a replacement for winpkt, does
not work unless you have WorkGroups for Windows, or some other windows
package that runs NDIS.

4. Using the Trumpet help as a guide, your 'autoexec.bat ' file will need to have
two lines added to get the ethernet communications working. The first line
starts the packet driver you installed with your ethernet card. The proper name
and syntax for this line should be identified in your ethernet card installation
guide or in one of the files that came with the packet driver (i.e. the Kingston
ethernet card has a '.doc' file that is part of the packet driver that describes how
to invoke the driver).The second line to add is 'winpkt 0x60 ' (vector 0x60 is usu-
ally the default vector to use).

5. After updating the 'autexec.bat' file, reboot the system to execute the changes.

6. From Windows, start Trumpet Winsock by double clicking on the Trumpet Win-
sock icon in the Trumpet Winsock Files program group.
Host Configuration 4-11

7. If setup was bypassed during installation, your connection should fail. A Trum-
pet Winsock window comes up indicating your connection status. Select
Setup from the File menu to open the Setup dialog.

8. Set the IP address field to the IP address of the PC host: 7.1.1.4 is suggested
to maintain consistency with this document.

9. Select Packet dr iver , and set the Vector to 60, Netmask to 255.255.240.0, and
Gateway to 0.0.0.0.

10. Select OK.

11. Edit the hosts file found in the installed Trumpet directory to include both the
PC host IP address and the board IP address. For example:

 7.1.1.4 local_enet
 7.1.1.5 evb_enet

After entering all the information, you may need to restart Trumpet Winsock for the network
setup to take effect.

Prior to exiting Windows, we recommend terminating Trumpet Winsock (close the
application). If you do not follow this recommendation, subsequent Trumpet starts may fail.
If this occurs, you will need to reboot your system.

4.2.2.2 Ethernet Setup - Windows 95

A compliant TCP/IP package comes with Windows 95, so no TCP/IP package needs to be
installed. If you haven’t done so already, install the ethernet card on the host system
according to the directions that came with the card.

To set the Host IP address for the ethernet connection:

• select the 'My Computer' icon from the desktop.
• select 'Control Panel'.
• select 'Network'.
• Add the appropriate "Adapter" network component for the ethernet adapter being used

(if not already added).
• Add a "Protocol" network component of 'Microsoft - TCP/IP' (if not already added).

Specify the IP address (7.1.1.4 is recommended to maintain consistency with this docu-
ment) and netmask (255.255.240.0) to be used.

Note: The "services" file that must be updated as part of the RISCWatch or evaluation kit
installation is in directory "C:\WINDOWS".

The Evaluation Kit software was developed for Windows 3.1. Though it can be run
successfully on Windows 95, certain restrictions apply. For example, file IDs need to be
restricted to an eight character file name, and a three character file extension, or
RISCWatch will not be able to locate source files.
4-12 403 EVB User’s Manual

4.2.2.3 Ethernet Setup - Windows NT 3.51

A compliant TCP/IP package comes with Windows NT, so no TCP/IP package needs to be
installed. If you haven’t done so already, install the ethernet card on the host system
according to the directions that came with the card.

To configure TCP/IP for ethernet, double-click on the control panel icon followed by the
network icon. Windows NT will prompt you through adding an ethernet adapter and TCP/IP.
An IP address of 7.1.1.4 is recommended to maintain consistency with this document. A
netmask of 255.255.240.0 should be used.

Note: The "services" file that must be updated as part of the RISCWatch or evaluation kit
installation is in directory "C:\WINNT35\system32\drivers\etc".

The Evaluation Kit software was developed for Windows 3.1. Though it can be run
successfully on Windows NT, certain restrictions apply. For example, file IDs need to be
restricted to an eight character file name, and a three character file extension, or
RISCWatch will not be able to locate source files.

4.2.3 ROM Monitor-Debugger Communication Setup - PC

Before the RISCWatch Debugger can be used, some additional steps need to be taken to
establish ROM Monitor-Debugger communications. These steps involve an update of the
TCP/IP services file and a restart of the TCP/IP package for the update to take effect.

Most PC TCP/IP packages place the services file under one of the TCP/IP package’s
subdirectories. Trumpet Winsock users should find the services file in the directory where
the Trumpet files were installed. Windows 95 users should find the services file under
“C:\WINDOWS\SERVICES”. Windows NT users will find the services file under
“C:WINNT35\system32\drivers\etc”. Users should consult their TCP/IP documentation or
system administrator if they can not locate the file. The following lines must be added to the
file:

 osopen-dbg 20044/tcp # for RISCWatch OS Open debug
 osopen-dbg 20044/udp # for RISCWatch rom_mon debug

For the update to take effect, TCP/IP needs to be re-started. This may require a re-boot of
the system and/or a restart of the TCP/IP package.

4.3 Sun Host Configuration

Sun configuration requires that you be the superuser of the host workstation. This is
accomplished by logging in as root or by using the su command to become the superuser.
Host Configuration 4-13

4.3.1 Serial Port Setup - SUN

The Sun workstation includes two serial ports to support communications via asynchronous
data transfer. These ports are labeled Serial A and Serial B on the back of the Sun’s system
unit. Some SPARCstation models multiplex these two ports into one physical port labeled
A/B (Use A if it’s available since use of the B port requires a special de-multiplexing cable
from Sun). This section refers to these ports as S1 and S2, respectively. When properly
configured, one of the serial ports can be used to connect a terminal emulator running on
the host to the ROM Monitor running on the EVB. This connection is made through the S1
serial port on the Sun and the SP1 serial port on the EVB.

The S1 port on the host must be configured for a baud rate of 9600, 8 data bits, 1 stop bit,
and no parity. The proper setting of these parameters is discussed later in the section on
terminal emulation.

4.3.2 Ethernet Setup - SUN

Since all Sun SPARCstations come equipped with an ethernet (or AUI) port, an ethernet
connection is used for host-to-EVB communications. The ethernet connection is made
through the ethernet port on the host and the 10Base2 connector on the EVB.

An Ethernet connection requires additional hardware. The 403 EVB supports connection via
Standard Ethernet, thin coax (10Base2).

A 10Base2 connection requires at least a thin coaxial cable and a BNC “T” connector when
the EVB is added to an existing network. If the EVB is at one of the ends of the Ethernet
network, a terminating resistor is also required. An exclusive Ethernet network between the
host and the EVB, requires a thin coaxial cable, two BNC “T” connectors, and two BNC
terminators. Depending on your SPARCstation model and options, an AUI (or thick
ethernet) adapter cable or an AUI/Audio Adapter may also be necessary. Both of these
cables are available from Sun. Consult the documentation included with the hardware for
additional information.

Establishment of an ethernet interface requires a host IP address. If the host SPARCstation
is connected to an existing ethernet network, the host IP address should already be defined.
Consult your network administrator on how to obtain the host’s ethernet IP address and how
to add the EVB to the existing network. Make a note of the host’s IP address since it will be
needed later.

If the host SPARCstation is not connected to an existing ethernet network, then a network
between the EVB and the host must be established. The ifconfig command can be used to
establish such a network. Users should consult their network administrator and Sun
documentation for additional information. A host IP address of 7.1.1.4 is suggested to
maintain consistency with this document. Make a note of the IP address selected since it will
be needed later during board setup.
4-14 403 EVB User’s Manual

4.3.3 ROM Monitor-Debugger Communication Setup - SUN

Before the RISCWatch Debugger can be used, the TCP/IP services file must be updated to
allow ROM Monitor-Debugger communications.

To modify the /etc/services file, you need to log in as root or the superuser (su). The
following lines must be added to the file:

 osopen-dbg 20044/tcp # for RISCWatch OS Open debug
 osopen-dbg 20044/udp # for RISCWatch rom_mon debug
Host Configuration 4-15

4-16 403 EVB User’s Manual

 5

5
403 EVB Connectors

This chapter describes the 403 EVB connectors. The 403 EVB can be accessed through two serial
ports, an Ethernet 10Base2 connector, and RISCWatch JTAG and RISCTrace connections. An
expansion interface is provided for connection to an external customer-supplied prototyping area
and a standard five-pin DIN connector is provided for power supply connection.
403 EVB Connectors 5-1

Positions of the connectors and jumpers on the EVB are indicated on Figure 5-1.

10Base2
Connector

P5 P4

Serial Port 2
Connector

Serial Port 1
Connector

P2

P
ow

er
F

us
e

(3
 A

m
p)

U2 U1

S
lo

t 0

S
lo

t 1

J1

J2

R
IS

C
W

at
ch

R
IS

C
T

ra
ce

D
at

a
B

us
 T

ra
ns

ce
iv

er
s

PowerPC
 403

Address Line Drivers

P3Expansion Connector

Serial
Communication
Controller

Reset

Cint

7.3728
MHZ
Osc

Programmable
Logic Device

20 MHz
Osc

66 MHz
Osc

Ethernet
Controller

Flash
Memory P1

J3

J9

J10

J8

J4

J5J6
J7
J11

Power
Col
TxD
RcDLE

D
s

Figure 5-1. 403 EVB Connectors
5-2 403 EVB Kit User’s Manual

5.1 Serial Port Connectors
Serial ports 1 and 2 are provided with standard nine-pin male right-angle connectors, as shown in
Figure 5-2 below:

Table 5-1 describes the signal-to-pin assignments for serial ports 1 and 2:

Table 5-1. Serial Port Signal Assignments

Serial Port 1 Serial Port 2

Pin Number Signal Name Pin Number Signal Name

1 Not connected 1 Not connected

2 RxD 2 RxD

3 TxD 3 TxD

4 DTR/RTS 4 RTS

5 GND 5 GND

6 DSR/CTS 6 CTS

7 Not connected 7 Not connected

8 Not connected 8 Not connected

9 Not connected 9 Not connected

Figure 5-2. Nine-Pin Serial Port Connector

Index

at Pin 1
403 EVB Connectors 5-3

5.2 Ethernet Connector
The 403 EVB is provided with a standard connector for a 10Base2 thin coax Ethernet connector.
Table 5-2 describes the connector on the EVB and the recommended mating connectors:

5.3 RISCWatch JTAG Debugger and RISCTrace Connectors

The RISCWatch JTAG debugger connects to the 403 EVB through a 2 × 8-pin header. The
RISCTrace feature uses a 2 × 10 logic analyzer header. The headers are compatible with
connectors for Hewlett-Packard and Tektronix logic analyzers. These headers are shown in Figure
5-3

Table 5-2. Ethernet Connector Description

Receptacle Specifications Mating Connector Specifications

Right-Angle BNC receptacle,
AMP 227161-6 or
Molex 73137-5005

AMP 221128-1, 227079-5,
2-329082-1 or Molex 73100-5001,
73103-5001, or 73106-5001

1

0.1"

0.1"

Index

Key Notch

1

0.1"

2

19 20

Index

Key Notch

0.1"

Figure 5-3. RISCWatch JTAG and RISCTrace Headers

2

15 16
5-4 403 EVB Kit User’s Manual

Placements of the RISCWatch and logic analyzer headers on the EVB are indicated on the layout
drawing in Figure 5-1 above. Signal names and positions on the headers are indicated in the
following tables:

The trace status header is used by the RISCTrace feature of the RISCWatch JTAG debugger:

Table 5-3. RISCWatch JTAG Header Description

Pin No. Signal Name Description

1 TDO JTAG test data out

2 NC To be left unconnected

3 TDI JTAG test data in

4 NC To be left unconnected

5 NC To be left unconnected

6 +Power Power (status signal, not processor VDD)

7 TCK JTAG test clock

8 NC To be left unconnected

9 TMS JTAG test mode select

10 NC To be left unconnected

11 HALT Processor halt

12 NC To be left unconnected

13 NC To be left unconnected

14 Key Pin in this position should be removed.

15 NC To be left unconnected

16 GND Ground

Table 5-4. RISCTrace Header Description

Pin Number Signal Name Pin Number Signal Name

1 NC 11 NC

2 NC 12 NC

3 SysClk3 13 TS0
403 EVB Connectors 5-5

5.4 Expansion Interface Connector
The EVB uses a 120-pin Eurocard type R right-angle receptacle (AMP 650874-4) as the card
expansion connector, shown in Figure 5-4 below:

One of the following 120-pin Eurocard type R right-angle pin assembly should be used as the
mating connector: AMP 650949-5 or 650949-9.

A Eurocard type C connector can also be mated to the type R receptacle described above. Note
that when connector types C and R are mixed, the connector circuit numbers do not match.

Table 5-5 describes the expansion interface connector on the 403 EVB.

4 NC 14 TS1

5 NC 15 TS2

6 NC 16 TS3

7 NC 17 TS4

8 NC 18 TS5

9 NC 19 TS6

10 NC 20 GND

Table 5-5. Expansion Interface Signal Assignments

Pin
Number Signal

Pin
Number

Signal
Pin

Number Signal

A1 D31 B1 D30 C1 D29

A2 D28 B2 D27 C2 D26

A3 D25 B3 D24 C3 D23

Table 5-4. RISCTrace Header Description

Pin Number Signal Name Pin Number Signal Name

A1Row A
Row B
Row C

Index

Figure 5-4. 120-Pin Eurocard Type R Header
5-6 403 EVB Kit User’s Manual

A4 D22 B4 D21 C4 D20

A5 D19 B5 D18 C5 D17

A6 D16 B6 D15 C6 D14

A7 D13 B7 D12 C7 D11

A8 D10 B8 D9 C8 D8

A9 D7 B9 D6 C9 D5

A10 D4 B10 D3 C10 D2

A11 D1 B11 D0 C11 XCVR_EN

A12 +5V Power B12 +5V Power C12 GND

A13 OE B13 R/W C13 GND

A14 CS0 B14 CS1 C14 CS2

A15 CS3 B15 CS4 C15 CS5

A16 CS6 B16 CS7 C16 GND

A17 DMAR0 B17 DMAR1 C17 DMAR2

A18 DMAR3 B18 +5v Power C18 GND

A19 DMAA0 B19 DMAA1 C19 DMAA2

A20 DMAA3 B20 +5V Power C20 GND

A21 EOT0 B21 EOT1 C21 EOT2

A22 EOT3 B22 +5V Power C22 GND

A23 INT0 B23 INT1 C23 INT2

A24 INT3 B24 INT4 C24 CINT_EXT

A25 SysClk2 B25 TimerClk C25 SerClk

A26 Reset_BUFF B26 Ext_Ready C26 HoldReq

A27 HoldAck B27 BusReq C27 Error

A28 BusError B28 +5V Power C28 GND

Table 5-5. Expansion Interface Signal Assignments

Pin
Number

Signal
Pin

Number
Signal

Pin
Number

Signal
403 EVB Connectors 5-7

5.5 Power Connector
The 403 EVB comes with a standard five-pin DIN connector for quick connect/disconnect to a
power supply. A 3 Amp glass fuse is mounted on the board. A power supply and a line cord are
provided with the 403 EVB. Power supply tolerances are ± 5% for the 5V supply. Table 5-6 defines
the connections for the power supply connector:

Warning : use only the power supply provided in your EVB kit.

A29 +5V Power B29 +5V Power C29 GND

A30 +5V Power B30 +5V Power C30 GND

A31 A29 B31 A28 C31 A27

A32 A26 B32 A25 C32 A24

A33 A23 B33 A22 C33 A21

A34 A20 B34 A19 C34 A18

A35 A17 B35 A16 C35 A15

A36 A14 B36 A13 C36 A12

A37 A11 B37 A10 C37 A9

A38 A8 B38 A7 C38 A6

A39 WBE3/A31 B39 WBE2/A30 C39 WBE1/A5

A40 WBE0/A4 B40 +5V Power C40 GND

Table 5-6. Power Supply Connections

Pin Number
Function

(card 4 2H1843)

1 GND

2 Frame Gnd

3 +5 V

4 No Connect

5 No Connect

Table 5-5. Expansion Interface Signal Assignments

Pin
Number

Signal
Pin

Number
Signal

Pin
Number

Signal
5-8 403 EVB Kit User’s Manual

5.6 Setting the EVB Jumpers
Eight jumpers are provided on the EVB, as described in Table 5-7. Jumpers J8-9 are laid out as
a three-position jumper that selects the width of the flash memory. The EVB comes with the
jumper installed to select an eight-bit flash memory width. If the external memory is not eight bits
wide, the jumper must be moved to select either 16-bit memory or 32-bit memory. If boot code is
to be accessed from external memory, the flash memory must be removed from its socket.

When installed, J11 provides a jumpered connection of the system clock to the timer clock input
on the 403. J4 and J5 are used for testing at the factory and must be installed.

Table 5-7. EVB Jumper Settings

Jumper No. Function Settings

J3 403 power source As installed, connects the 403 processor to 3.3
V supply. An ammeter may be connected
across these pins to measure ambient power to
the 403.

J4 Factory test Must be installed.

J5 Factory test Must be installed.

J6 Ext_Ready select Remove jumper if the signal is to be provided
through the expansion connector.

J7 XCVR_EN select Remove jumper if the signal is to be provided
through the expansion connector.

J8-9 BootWidth select As installed at factory, selects 8-bit flash
memory width.

J10 External reset input Shorting the two pins together resets the
PowerPC 403 processor.

J11 TimerClk source select When installed, 10MHz is selected as TimerClk
source. Optionally, an external clock input may
be connected to the input.

J8

J9

8-Bit 32-Bit

16-Bit
403 EVB Connectors 5-9

5.7 Resetting the EVB
The RST switch on the board is a momentary SPST (Single Pole Single Throw) switch that
generates a board hardware reset. A hardware reset simultaneously resets the 403 processor, the
National DP83902 Ethernet controller and the National NS16550 serial communications
controller.

5.8 Critical Interrupt Switch
The CINT switch on the board is a momentary SPST switch that generates a critical interrupt on
the 403 processor chip. The ROM Monitor supports using the critical interrupt as a mechanism for
suspending the execution of an application. When debug is not used, the ROM Monitor simply
passes the critical interrupt on to the application’s first level interrupt handler.

5.9 Connecting the 403 EVB Hardware
In order to establish a working environment, the EVB must be connected to a host system. ROM
Monitor access requires a connection between the SP1 serial port on the board and the S1
(COM1) serial port on the host. Users must also establish a connection for debug and downloading
applications from the host to the board. This connection is made over the SLIP or Ethernet network
established during host configuration.

Included in the 403 EVB kit are two interface cables, each supporting either 9-pin or 25-pin serial
port connections. One is for connecting the SP1 serial port on the board to a terminal (or to a host
running a terminal emulator) and the other for connecting the SP2 serial port on the board to a host
system for debug and downloading applications. The Sun version of the 403 EVB kit contains only
one serial port cable since ethernet is used for host-to-EVB comunications. The hardware
necessary for establishing an ethernet connection is not included in the EVB kit.

Assuming a terminal emulator running on the host is going to be used for ROM Monitor access,
connect the 9-pin serial port connector on one end of a cable to the SP1 port on the EVB, and the
other end of the same cable to the S1 (COM1) serial port on the host. The host end may require
the 25-pin connector or a serial port adapter (not supplied) for connectivity. Sun SPARCstation
users may require the 25 pin male-to-male adapter (included in the Sun 403 EVB kit) at the host
end. If a SLIP connection is going to be used for host-to-EVB communications, connect the second
cable in a similar manner using SP2 on the EVB and the S2 (COM2) serial port on the host.
5-10 403 EVB Kit User’s Manual

If an Ethernet connection is going to be used, make any necessary cable connections between the
host and the 10Base2 Ethernet connection on the EVB. If this connection is to be used exclusively
for communications between the host and the EVB, each end must have a BNC “T” type connector
terminated at one end. If the connection is going to be made to an existing ethernet network, users
should consult their Network Adminstrator to insure proper connectivity.

AAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

TERMINAL EMULATOR

HOST

running on

EVAL BOARD

Serial Port 1 (SP1)

Serial Port 2 (SP2)

Ethernet (P5)

HOST

S1 (com1)

S2 (com2)

SLIP

Figure 5-5. Serial Port Connection

AAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A

TERMINAL EMULATOR

HOST

running on

EVAL BOARD

Ethernet (P5)

HOST

S1 (com1)

Ethernet
Adapter

50 ohm thin coax

Figure 5-6. Point-to-Point 10Base2 Ethernet Connection

Serial Port 1 (SP1)

Serial Port 2 (SP2)

ENET cable

5050-ohm terminator
BNC T-connector
403 EVB Connectors 5-11

Note: Both a SLIP and Ethernet connection can be used as long as both networks have been
configured properly and the proper connections have been made.

Also included in the 403 EVB kit, is a power supply and its power cord. Connect the female end of
the power cord to the male connector on the power supply. Also connect the male 5-pin DIN
connector from the power supply to the female 5-pin DIN connector on the board.

5.10 Using a Terminal Emulator

The ROM Monitor transmits/receives data through serial port 1 (SP1) on the evaluation
board. Access to the ROM Monitor can be achieved by connecting a VT100 (or compatible)
teminal directly to SP1 on the EVB or by using a terminal emulator running on the host.
When using a terminal emulator, access is obtained via a connection between SP1 on the
EVB and an available serial (or COM) port on the host system.

5.10.1 RS/6000 Terminal Emulation

The AIX Terminal Interface Program (TIP) can be used as a terminal emulator to support
communications with the ROM Monitor. When properly configured, TIP connects the host
RISC/6000 to a remote system, which in our case is the EVB. To set up TIP, do the following:

• log in as root or the superuser (su)
• go to the /etc directory (cd /etc)

• see if the file, remote , exists (ls remote). If the file does not exist, create it.
• using an editor, add the following line to the remote file (cut and pasters can

find this line in the README.TXT file) :

tty0:dv=/dev/tty0:br#9600:el=^U^C^S^Q^D:ie=%$:oe=^D:pa=none:

• exit from root

TIP configuration is complete. Once all the host-to-EVB connections have been properly
made and power has been supplied to the board, TIP can be activated by typing tip tty0 at
the AIX command prompt. After resetting the board, the ROM Monitor main menu should
appear in the window where tip was activated. It may be necessary to hit the enter key once
or twice to get the menu to appear for the first time. Additional information on TIP can be
found in AIX Communications and Procedures (GC23-2203, two volumes).

Some useful escape sequences to know when using TIP include (Note - it may be
necessary to hit the Enter key before entering these escape sequences.):

• ~? - help for TIP
• ~CTRL-D - instructs the TIP command to terminate the connection and exit
• ~# - sends a break to the remote system

• ~s script - starts recording of transmissions made by the remote system

Recordings are made in the default tip.record file in the user’s current directory

• ~s !script - stops recording of transmissions made by the remote system
5-12 403 EVB Kit User’s Manual

Note - If a terminal emulator other than TIP is used, it must be configured for 9600 baud,
eight bits per character, one stop bit, and no parity.

5.10.2 PC Terminal Emulation

5.10.2.1 Windows 3.1 and Windows NT Terminal Emulation

Once all the host-to-EVB connections have been properly made and power has been
supplied to the board, the Windows Terminal program can be used as a terminal emulator to
support communications with the ROM Monitor. To do this:

• from Windows Program Manager, select Accessories

• select Terminal
• select Settings
• select Communications
• select COM1 (or the appropriate COM port used for S1 serial port set-up)

• select Baud Rate 9600, Data Bits 8, Stop Bits 1, Parity None

• select Flow Control Xon/Xoff

• select OK

After resetting the board, the ROM Monitor menu should appear in the Terminal window. If it
does not, check for proper connectivity between the host and the board. If the ROM Monitor
menu still does not appear, insure that the COM port has been properly enabled. This can
be done by using the configuration utility on the host PC (see your PC documentation for
more details).

5.10.2.2 Windows 95 Terminal Emulation

Once all the host-to-EVB connections have been properly made and power has been
supplied to the board, the Windows 95 HyperTerminal program can be used as a terminal
emulator to support communications with the ROM Monitor. The steps for setting up the
terminal emulator connected to COM1 are as follows:

• select 'Start' from the Windows 95 task bar
• select 'Programs'
• select 'Accessories'

• select 'HyperTerminal'
• If you see a window that says "You need to install a modem before you can

make a connection. Would you like to do this now?" click on "No", you do not
need a modem for the evaluation board.

• select the 'Hypertrm' icon
• enter a name, for example "evb" and select an icon
403 EVB Connectors 5-13

• select the following:
Connect using Direct to Com 1(default)
Bits per second - 9600
Data bits - 8 (default)
Parity - None (default)
Stop Bits - 1 (default)
Flow Control - Xon/Xoff

• select 'OK'

After resetting the board, the ROM Monitor menu should appear in the HyperTerminal
window. If it does not, check your HyperTerminal settings and ensure proper connectivity
between the host and the board.

5.10.3 SUN Terminal Emulation

The Terminal Interface Program (TIP) can be used as a terminal emulator to support
communications with the ROM Monitor. When properly configured, TIP connects the host
Sun SPARCstation to a remote system, which in our case is the EVB. To set up TIP, do the
following:

• log in as root or the superuser (su)
• go to the /etc directory (cd /etc)

• see if the file, remote , exists (ls remote). If the file does not exist, create it.

• using an editor, add the following line to the remote file (cut and pasters can
find this line in the README.TXT file) :

tty0:dv=/dev/ttya:br#9600:el=^U^C^S^Q^D:ie=%$:oe=^D:pa=none:

• exit from root

TIP configuration is complete. Once all the host-to-EVB connections have been properly
made and power has been supplied to the board, TIP can be activated by typing tip tty0 at
the command prompt. After resetting the board, the ROM Monitor main menu should appear
in the window where tip was activated. It may be necessary to hit the enter key once or twice
to get the menu to appear for the first time. If the ROM Monitor menu does not appear,
consult your System Administrator - the ttya device may need to be modified. Additional
information on TIP can be found in the online man pages by typing man tip .

Some useful escape sequences to know when using TIP include (Note - it may be
necessary to hit the Enter key or CTRL-D before entering these escape sequences.):

• ~? - help for TIP

• ~CTRL-D - instructs the TIP command to terminate the connection and exit
• ~# - sends a break to the remote system
• ~s script - starts recording of transmissions made by the remote system

Recordings are made in the default tip.record file in the user’s current directory
5-14 403 EVB Kit User’s Manual

• ~s !script - stops recording of transmissions made by the remote system

Note - If a terminal emulator other than TIP is used, it must be configured for 9600 baud,
eight bits per character, one stop bit, and no parity.

5.11 Booting the PowerPC 403 on the EVB
When the connectors have been installed and power is applied to the 403 EVB, pressing the Reset
SPST switch causes the 403 and the communications controllers to reset. After the ROM monitor
initializes the EVB, the monitor menu is displayed if a properly configured terminal (or terminal
emulator) is attached to serial port 1 of the EVB. Details of ROM Monitor operation are provided
in a later chapter.
403 EVB Connectors 5-15

5-16 403 EVB Kit User’s Manual

6

6
403 EVB Hardware

This chapter describes the PowerPC 403 embedded controllers, memory subsystems, and
external interfaces. For more detailed information on the 403 controllers, consult their respective
user’s manuals:

• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual

• PPC403GCX Embedded Controller User’s Manual

Copies of the user’s manuals can be obtained by calling the IBM PowerPC Literature Center at
1(800)-POWERPC.
403 EVB Hardware 6-1

6.1 403 Embedded Controllers

6.1.1 PowerPC 403 Embedded Controller

The 403GA RISC controller consists of a pipelined RISC processor core and several peripheral
interface units: bus interface unit, DMA controller, asynchronous interrupt controller, serial port,
and JTAG/debug port.

The RISC processor core includes the internal 2KB instruction cache and 1KB data cache,
reducing overhead for data transfers to or from external memories. The instruction queue logic
manages branch prediction, folding of branch and condition register logical instructions, and
instruction prefetching to minimize pipeline stalls.

RISC Execution Unit

Cache Unit
Instruction

Cache Unit
Data

4-Channel
DMA

Controller

Serial

Port
JTAG

Port

DRAM Controller I/O Controller

Bus Interface Unit
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A

AA
AA
AA
AA
AA
AA

SRAM, ROM, I/O
ControlsControlsAddress Bus

Data Bus

A
A
A
A
A
A
A
A
AAAAAAAAAAAAAAAAAAAAAAAAAAA

Timers

(Address
and

Control)

On-chip
Peripheral
Bus

AAAAAAAAAAAAAAAAAAAAAAAAAAA

DRAM

Interrupt

AA
AA
AA
AA
AA
AA

Controller

RISCWatch
400 Tools

RS232
Interface

PowerPC 403Ethernet
Controller

DRAM
Banks

Memory
Flash

Data
Buffers

Buffers
Address

Embedded Controller

•

•

•
•

UART •
•

Figure 6-1. 403 EVB Block Diagram

A
A

A
A

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

•

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

Memory Management
Unit

 (excluding 403GA)
6-2 403 EVB Kit User’s Manual

External I/O devices or SRAM/DRAM memory banks can be directly attached to the 403GA BIU.
Interfaces for up to eight memory banks and I/O devices, including a maximum of four DRAM
banks, can be configured individually, allowing the BIU to manage devices or memory banks with
differing control, timing, or bus width requirements.

6.1.2 403GC Embedded Controller

The 403GC RISC controller provides all of the features of the 403GA plus a Memory
Management Unit (MMU). The MMU provides address translation and protection functions for
embedded applications. Together with appropriate system level software, the MMU provides the
following functions:

• Translation of 4GB logical address space into physical addresses

• Independent enable of Instruction and Data translation/protection

• Page level access control via the translation mechanism

• Software control of page replacement strategy

• Additional control over protection via zones

6.1.3 403GCX Embedded Controller

The 403GCX RISC controller provides all of the features of the 403GC plus larger caches (16KB
instruction cache and 8KB data), clock doubling, and EDO memory support.

6.2 Memory Subsystems

The bus interface unit in the 403 processor manages the external memory interfaces and
provides services such as wait-state generation and DRAM refresh. The BIU also imposes
some addressing restrictions:

• All SRAM (and SRAM look-alikes such as PROM) must have
address[1:3]=b’111’.

• All DRAM must have address[1:3]=b’000’.

• Any address for which address[1:3] is neither b’000’ nor b’111’ is reserved, on
the On-Chip Peripheral Bus (OPB).

To inform the BIU of the characteristics of the attached external devices, one or more Bank
Registers must be programmed. Let BRn refer to the particular Bank Register programmed
for an address range. The following must be true:

• If the bank register is any of BR0 - BR3, only SRAM is supported.
It must be true that address[1:3]=b’111’ and BRn[31]=0.

• If the bank register is any of BR4 - BR7, the following apply:

• If address[1:3]=b’111’ (the SRAM case), then must have BRn[31]=1.
• If address[1:3]=b’000’ (the DRAM case), then must have BRn[31]=0.
403 EVB Hardware 6-3

• If address[1:3] is neither b’000’ nor b’111’, then it is not appropriate to pro-
gram a Bank Register for this address. This address is reserved for internal
use, and Bank Registers are only for external addresses. Neither the
SRAM nor the DRAM controller will be activated by this address, and a
machine check exception is generated by the timeout error on the OPB.

6.2.1 External Memory Banks

Each Bank Register controls the characteristics of one contiguous block of external memory,
where only address bits 1:31 are considered. Address bit 0 can influence cacheability, in
conjunction with the cacheability settings in the control registers for the instruction and data
caches.

Address bits 1:3 can be set to b’000’ or b’111’ , and (for BR4-BR7) BRn bit 31 reflects this
selection. Address bits 4:11 of the starting (lowest) address of the contiguous block are also
mapped to BRn bits 0:7.

The contiguous block of memory that is described by the BR must be selected to be one of seven
sizes shown in Table 6-1. The starting address in BRn bits 0:7 must be aligned on a boundary
that agrees with the selected size. Table 6-1 assists in properly specifying BRn bits 0:7 (‘X’
denotes a don’t care).

There are eight BRs in the 403. More than one BR is used only when multiple blocks of memory
are described. This could occur because the blocks are not contiguous, or because the blocks
(even if contiguous) require different memory characteristics (for example, one block is fast
memory and another is slow memory). More than one BR should not be used to describe the
same address.

6.2.2 Flash Memory Map and Bank Configuration

There is 128KB of flash memory on the 403 EVB. The memory bank is eight bits wide and
comprises a single 128Kb × 8-bit device. The flash memory is accessed using bank register 0
(BR0), and has a read access time of 90 nanoseconds.

Table 6-1. BR Bank Address Select

Size
(megabytes)

Size Select
BRn Bits 8:10

Bank Addr Sel
BRn Bits 0:7

1 b’000’ b’XXXX XXXX’

2 b’001’ b’XXXX XXX0’

4 b’010’ b’XXXX XX00’

8 b’011’ b’XXXX X000’

16 b’100’ b’XXXX 0000’

32 b’101’ b’XXX0 0000’

64 b’110’ b’XX00 0000’
6-4 403 EVB Kit User’s Manual

The last flash memory address must be located at the top of the 256MB address region, 0xFFFF
FFFF, and descend from there. The processor always fetches the first instruction from address
0xFFFF FFFC after power-up or a system reset. To satisfy this requirement, nonvolatile memory
addresses are mapped to the highest (uppermost) bank address. The bank address of the
highest 1MB region is 0xFF; the addresses in that bank are 0xFFF0 0000 – 0xFFFF FFFF.

Figure 6-2 shows the fields of a bank register configured for SRAM, ROM, or other peripheral
devices:

The ROM monitor writes BR0 with the eight-character hexadecimal word, 0xFF18 0242. This
sets the fields in BR0 as follows:

Table 6-2. Bank Register 0 Field Settings

Field Description Bit Number Value

BAS Bank Address Select 0:7 0xFF

 BS Bank Size 8:10 0x0

 BU Bank Usage 11:12 0x3

SLF Sequential Line Fills 13 0x0

BME Burst Mode Enable 14 0x0

 BW Bus Width 15:16 0x0

 RE Ready Enable 17 0x0

 TWT Transfer Wait 18:23 0x02

 CSN Chip Select On Timing 24 0x0

 OEN Output Enable On Timing 25 0x1

WBN Write Byte Enable On 26 0x0

ReservedFigure 6-2. SRAM/ROM Configuration for Bank Registers

310 7 8 10 11 12 15 16 17 18 23 24 25 26 27 28 3013 14

WBF

BAS BU RE CSN WBN TH

OENFWTBWBS SLF

BME

2221
AA
AA
AA
AA
AA
AA

TWT

BWT SD
403 EVB Hardware 6-5

6.2.3 DRAM Memory Map and Bank Configuration

The 403 EVB has two vertical-profile 72-pin SIMM slots. Each slot can accept any 72-pin JEDEC-
compliant DRAM SIMM having 32 data bits. The board has a maximum DRAM capacity of
128MB when both slots are populated with 64MB SIMMs.

A populated slot contains one or two memory banks, depending on the type of SIMM used. A
single sided SIMM provides a single bank of memory and a double-sided SIMM provides two
banks. Four memory banks are supported when both slots are populated with double-sided
SIMMs.

A 1Mb × 32-bit 60ns EDO SIMM is factory-installed in the first DRAM slot, slot 0. This single-
sided SIMM provides 4MB of fast page-mode (FPM) DRAM for 403GA and 403GC users, or 4MB
of EDO DRAM for 403GCX users.

Note - if two SIMMs of different sizes are installed, the larger SIMM must be installed in slot 0.

Like the flash memory bank, the DRAM banks are controlled by the bank registers. Bank
registers 4–7 (BR4–7) are used to configure the DRAM banks. During power-up or reset, the
ROM Monitor runs a check on the memory installed and configures the bank registers
appropriately.

Figure 6-3 shows the fields of BR4 through BR7.

WBF Write Byte Enable Off 27 0x0

TH Transfer Hold 28:30 0x1

Reserved 31 0x0

Table 6-2. Bank Register 0 Field Settings

Field Description Bit Number Value

Figure 6-3. Bank Registers - DRAM Configuration (BR4-BR7)

0 7 8 10 11 12 15 16 17 18 19 20 21 22 23 24 25 26 27 30 3113 14

BAS

BS

BU IEM ARM BAC RR

BW RCT FAC PCC SD

RAR

SLF

ERM

PM
6-6 403 EVB Kit User’s Manual

The installed 4MB memory bank can be accessed as soon as the ROM Monitor writes BR7 with
the value 0x0059 0AB0. This value is then optimized based on the system configuration. Possible
403 EVB configurations and their appropriate BR7 values are included in the following table:

Note that these values are not necessarily optimal for use with other board designs.

The ROM Monitor determines the processor speed dynamically by sending a single character
through the 403’s on-chip serial port in loopback mode, checks the processor version register
(PVR), and then sets the bank registers appropriately. Please see the ramcheck.c source file in
the openbios/miscLib directory for additional details.

Assuming the 403 EVB has a 403GA running at a speed of 33MHz, upon a reset of the board the
ROM Monitor writes BR7 with the value 0x0059 0AB0. This sets the fields in BR7 as follows:

Table 6-3. Possible 403 EVB Bank Register 7 Settings

Speed
(MHz)

Processor(s) DRAM Type BR 7 Value Notes

 25 403GA, 403GC 60ns FPM, EDO 0x00590AAE IOCR[DRC]=1

 33 403GA, 403GC 60ns FPM, EDO 0x00590AB0 IOCR[DRC]=1

 25/50 403GCX 60ns FPM 0x00590AAE IOCR[DRC]=1

 33/66 403GCX 60ns FPM 0x00590AB0 IOCR[DRC]=1

 25/50 403GCX 60ns EDO 0x0059082E IOCR[DRC]=0
IOCR[EDO]=1

 33/66 403GCX 60ns EDO 0x00590A30 IOCR[DRC]=0
IOCR[EDO]=1

Table 6-4. Bank Register 7 Field Settings

Field Field Description Bit Number Value

BAS Bank Address Select 0:7 0x00

 BS Bank Size 8:10 0x2

 BU Bank Usage 11:12 0x3

SLF Sequential Line Fills 13 0x0
403 EVB Hardware 6-7

If a second 1Mb X 32-bit 60ns SIMM was plugged into slot 1 of the board, upon power-up or reset
the ROM Monitor would write BR6 with the eight character hexadecimal word, 0x0459 0AB0.

6.2.4 Bank Configura tion (BR1) for the Natio nal 16550 Serial Controller

Following power-up or reset, BR1 is disabled. The National NS16550 serial communications
controller (which is connected to serial port 2 on the board) can be accessed as soon as the
ROM monitor writes BR1 with the eight-character hexadecimal word, 0xE018 0468 This sets the
fields in BR1 as follows:

ERM Early RAS Mode 14 0x0

 BW Bus Width 15:16 0x2

 IEM Int/Ext Multiplexer 17 0x0

 RCT RAS to CAS Timing 18 0x0

ARM Alternate Refresh Mode 19 0x0

 PM Page Mode 20 0x1

 FAC First Access Cycles 21:22 0x1

BAC Burst Access Cycles 23:24 0x1

PCC Pre-Charge Cycles 25 0x0

RAR RAS Active During Refresh 26 0x1

RR Refresh Rate 27:30 0x8

S/D SRAM/DRAM 31 0x0

Table 6-5. Bank Register 1 Field Settings

Field Description Bit Number Value

BAS Bank Address Select 0:7 0xE0

 BS Bank Size 8:10 0x0

Table 6-4. Bank Register 7 Field Settings

Field Field Description Bit Number Value
6-8 403 EVB Kit User’s Manual

 BU Bank Usage 11:12 0x3

SLF Sequential Line Fills 13 0x0

BME Burst Mode Enable 14 0x0

 BW Bus Width 15:16 0x0

 RE Ready Enable 17 0x0

 TWT Transfer Wait 18:23 0x04

 CSN Chip Select On Timing 24 0x0

 OEN Output Enable On Timing 25 0x1

WBN Write Byte Enable On 26 0x1

WBF Write Byte Enable Off 27 0x0

TH Transfer Hold 28:30 0x4

Reserved 31 0x0

Table 6-5. Bank Register 1 Field Settings

Field Description Bit Number Value
403 EVB Hardware 6-9

6.2.5 Bank Configura tion (BR2) for the Ethernet Controller

Following power-up or reset, BR2 is disabled. The National NS83902 Ethernet controller can be
accessed as soon as the ROM monitor writes BR2 with the eight-character hexadecimal word,
0x4018 46F4. This sets the fields in BR2 as follows:

Table 6-6. Bank Register 2 Field Settings

Field Description Bit Number Value

BAS Bank Address Select 0:7 0x40

 BS Bank Size 8:10 0x0

 BU Bank Usage 11:12 0x3

SLF Sequential Line Fills 13 0x0

BME Burst Mode Enable 14 0x0

 BW Bus Width 15:16 0x0

 RE Ready Enable 17 0x1

 TWT Transfer Wait 18:23 0x06

 CSN Chip Select On Timing 24 0x1

 OEN Output Enable On Timing 25 0x1

WBN Write Byte Enable On 26 0x1

WBF Write Byte Enable Off 27 0x1

TH Transfer Hold 28:30 0x4

Reserved 31 0x0
6-10 403 EVB Kit User’s Manual

6.3 403 EVB Address Map
The ROM monitor initializes the instruction cache control register (ICCR) and the data cache
control register (DCCR) so that the installed flash memory and DRAM banks are cacheable. The
peripheral devices configured in bank registers 1-4 are set up in the ICCR and the DCCR as
noncacheable.

The addresses for memory banks and peripheral devices are listed in Table 6-7 below:

6.4 Ethernet and Serial Port Interrupts
The assignments of the Ethernet and serial controller interrupts to the 403 external interrupt
inputs are presented in Table 6-8 below:

These assignments are made via the input/output configuration register (IOCR).

Table 6-7. 403 EVB Memory Map

Bank Register : Device Address

BR0: 128KB Flash Memory
Cacheable region: 0xFFF0 0000 - 0xFFFF FFFF

Noncacheable region: 0x7FF0 0000 - 0x7FFF FFFF

BR1: Serial Communications
Controller (Serial Port 2)

Noncacheable region: 0x7E00 0000 - 0x7E00 0007

BR2: Ethernet Controller Noncacheable region: 0xF400 0000 - 0xF400 003F

BR7: 4MB DRAM
Noncacheable region: 0x8000 0000 - 0x803F FFFF

Cacheable region: 0x0000 0000 - 0x003F FFFF

Table 6-8. Ethernet and Serial Port Interrupts

Interrupt Source 403 Input

Ethernet Controller INT0, polarity programmed active-high, level sensi-
tive triggering

Serial Port 2 INT1, polarity programmed active-high, level sensi-
tive triggering
403 EVB Hardware 6-11

6.5 The Ethernet Controller’s Network Address
The EVB’s Ethernet controller, a National DP83902, has been assigned a unique, six byte,
network address. This address, also known as the media access control or MAC address, may
need to be known by customers using the EVB to develop their own ROM versions.

The easiest way to obtain its value is to hook up a terminal (or terminal emulator) to the EVB’s
serial port 1 (as explained in the previous chapter) and bring up the ROM Monitor. After selecting
option 7 to display the configuration, the controller’s network address is displayed in the Ethernet
boot source’s hwaddr field as twelve hex characters (six bytes).

The ROM Monitor returns the MAC address as part of the board_cfg_data structure when a call
to its get_board_config() function is made. Sample code showing how this is done can be found
in the usr_samp.c file in the OS Open samples directory.

Another way to obtain the address, is to search the Vital Product Data (VPD) area in ROM where
the network address is stored. The VPD fields consist of ASCII strings identifying the type of field,
a length byte specifying the length of the associated data, and the data itself. The VPD begins at
address 0xFFFFFE00 and is marked by field “*VPD” with 0 bytes of associated data. The
network address is marked by “*NA” with six bytes of associated data (the network address).
Finally, the end of the VPD is marked with “*END”. To extract the network address, a program
would typically start at 0xFFFFFE00, scan for “*NA”, verify the next byte is 0x6, and treat the next
six bytes as the network address.

6.6 Accessing the Ethernet Controller

The method of attachment of the Ethernet controller to the 403 bus can cause it to be forced
off of the bus during a transaction. To avoid this problem a byte register at address
0xF4000020 must be interrogated after every Ethernet chip access. If the value of the
register is 0x01, the access was successful. Otherwise, the operation must be retried. See
enetLib.c in the openbios/enetLib directory for examples and additional information.
6-12 403 EVB Kit User’s Manual

7o

7
403 EVB ROM Monitor

This chapter describes the 403 EVB ROM Monitor program. This ROM resident program
provides chip (and board level) initialization and a user interface menu that supports board
diagnostics, program downloads, and debug.

7.1 ROM Monitor Source Code

The ROM Monitor source code is provided for ROM development purposes. This code is
seperate from the sample applications described in Chapter 8. The code is loosely
organized by function in the following subdirectories and files within the
/usr/osopen/PLATFORM/openbios directory (\osopen\PLATFORM\openbios for PC
users):

• Makefile Top level makefile to create ROM monitor image (RS/6000 & SUN)
• makefile.mak Top level makefile to create ROM monitor image (PC)
• devTab.c Handles boot device definitions
• include/ C include files
• m4/ assembler preprocessor include files
• ppcLib/ C callable functions to access PowerPC special instructions
• enetLib/ Ethernet chip specific code
• ioLib/ I/O helper functions
• miscLib/ Miscellaneous routines used for ROM monitor
• s1Lib/ Serial Port interface routines
• s1ldLib/ Code to support S1 serial port downloads
• dbLib/ Ptrace debug interface routines
• entry.s Processor and C environment initialization
• lib/ Repository for intermediate libraries
• netLib/ IP and UDP processing functions
• slipLib/ SLIP implementation
• align_h.s Alignment handling code
• mapfile1 Mapfile to specify ROM Monitor linkage directives
• bios_***.map Load map of the ROM Monitor version *** shipped with the EVB
• flash/ Code to support re-programming the flash memory
403 EVB ROM Monitor 7-1

7.2 Communications Features
The 403 EVB ROM Monitor runs as part of the boot code in the flash memory on the board.
The monitor communicates with an asynchronous terminal (or terminal emulator) attached
to serial port 1 (SP1) on the EVB, through which the user accesses the monitor menu. The
403 EVB can download applications and communicate with the host debugger through
serial port 2 (SP2) or the Ethernet adapter, depending on which devices are enabled.
Communications between SP2 and the host use the Serial Link Internet Protocol (SLIP),
while Ethernet communications use the Internet Protocol (IP) over standard Ethernet. The
403 EVB also supports the downloading of programs via serial port 1 (SP1). To use this
feature, a VT100 terminal emulator that supports binary file transfers (such as kermit) must
be used on the host system.

7.3 Bootp and tftp Configuration to support ROM Monitor Loads

Both the debugger and the ROM Monitor can be used to load applications onto the board.
Details on how to use the debugger can be found in the RISCWatch User’s Guide. To use
the facilities of the ROM Monitor to download applications to the evaluation board, the host
workstation must be configured to support the bootp protocol and tftp daemons. The
configuration consists of two parts. The bootptab file on the host must be customized to
match system requirements, and the bootp and tftp daemons (or servers) must be made
available.

7.3.1 RS/6000 bootp and tftp confi gura tion

To modify the /etc/bootptab file, you need to log in as root or the superuser (su). Entries
describing the evaluation board to the host workstation must be added to this file. Complete
details describing the bootptab file format are available in the AIX Command Reference
under “bootpd”. File entries suitable for our purposes are shown below:

slipc:hd=/usr/osopen/PLATFORM/samples:bf=boot.img:bs:ip=8.1.1.5:sm=255.255.255.255
enetc:ht=ethernet:hd=/usr/osopen/PLATFORM/samples:bf=boot.img:bs:ip=7.1.1.5:sm=255.
255.255.255:ha=xxxxxxxxxxxx

Each of the entries, slipc and enetc, should be entered on a single line. The value of the
ethernet hardware address field in the enetc entry, ha=xxxxxxxxxxxx, should match the
twelve character hardware address listed for the Ethernet Boot Source on the ROM Monitor
menu.

Both connections use the file /usr/osopen/PLATFORM/samples/boot.img as the source
for the application image to be downloaded onto the board. Be sure that the ht=ethernet
keyword is used for the Ethernet connection entry and that the IP addresses are those of the
evaluation board. Note that the IP address in the slipc entry must match that of the IP
address assigned to the board during serial port set-up. Since a board IP address was not
required for Ethernet set-up, the IP address used in the enetc entry defines the IP address
of the board for the Ethernet connection. If the suggested bootptab entries are used, 7.1.1.5
would be the board’s Ethernet IP address. Take note of the board’s IP addresses, since they
must be made known to the ROM Monitor.
7-2 403 EVB User’s Manual

To start the bootp and tftp daemons on systems running AIX 3, do the following:

• log in as root or the superuser (su)
• enter smit
• select Diskless Workstation Management and Installation
• select Start Daemons on Server
• select Start BOOTP Daemon
• select Do or hit Enter

Upon successful completion, bootp configuration is complete. Continue for
tftp :

• select Done or hit PF3
• select Cancel or hit PF3 to return to the Start Daemons on Server screen
• select Start TFTP Daemon
• select List

If “tftp udp ” is not on the list, tftp has already been started for the workstation.
The configuration steps are complete. Select Exit to leave smit .

• select “tftp udp ”
• select Do or hit Enter
• You should be at the Add an inetd Subserver screen. The defaults listed are

acceptable.
• select Do or hit Enter

Upon successful completion, tftp configuration is complete. Select Exit to leave
smit

To start the bootp and tftp daemons on systems running AIX 4, do the following:

• log in as root or the superuser (su)
• enter smit
• select Processes and Subsystems
• select Subservers
• select Start a Subserver
• select bootps
• select OK

Upon successful completion, bootp configuration is complete. Select Done and
continue for tftp.

• select Start a Subserver
• select tftp
• select OK
• select Done

Upon successful completion, tftp configuration is complete. Select Exit to leave
smit
403 EVB ROM Monitor 7-3

7.3.2 PC bootp and tftp configuration

Not all TCP/IP packages include the bootpd and tftpd servers required for ROM Monitor
downloads. For this reason both the bootpd and tftpd servers have been included in the
EVB software package under the \osopen\bin directory. These servers can be installed and
used in conjunction with Windows Socket compliant TCP/IP packages such as Trumpet
Winsock and those that come with Windows 95 and Windows NT.

Since TCP/IP packages vary greatly, this section should be used only as a guideline for
bootp and tftp set-up. Users should consult their TCP/IP documentation for specific details.

Configuration consists of two parts. The bootptab and services files on the host must be
customized to match system requirements, and the bootpd and tftpd servers must be made
available. If you choose to use the bootpd and tftpd servers provided with this package, you
will need to modify your autoexec.bat file to specify the location of the bootptab and
services files. This is accomplished by adding a line that sets up an ETC constant to the
directory where the bootptab and services files are located (ie. SET ETC=C:\TRUMPET for
Windows 3.1/Windows 95 Trumpet users, ETC=C:\WINDOWS for Windows 95 users,
ETC=C:\WINNT35\system32\drivers\etc for Windows NT 3.51).

A sample bootptab file, \osopen\PLATFORM\samples\bootptab.sam , is included with the
EVB software. This file can be copied to the ETC directory set in the autoexec.bat file and
modified appropriately. Note that the bootptab file in the ETC directory must be named
bootptab with no file extention. Entries describing the evaluation board to the host PC must
be added to the bootptab file.

When creating or modifying the bootptab file, the following rules apply:

• blank lines and lines beginning with “#” are ignored
• each entry must be entered on a single line
• each entry must start with a hostname followed by the legends (see the sample

bootptab file for legend descriptions)
• use “:” to separate each legend and leave no spaces between legends
• user must supply the host ip address via the “ip” legend
• if the “hd” (home directory) & “bf” (bootfile) legends are not provided for a particular

entry, the first defined “hd” and “bf” legends in the bootptab file will be taken as default

File entries similar to those below would be suitable:

slipc:hd=\osopen\PLATFORM\samples:bf=boot.img:bs:ip=8.1.1.5:sm=255.255.255.255
enetc:ht=ethernet:hd=\osopen\PLATFORM\samples:bf=boot.img:bs:ip=7.1.1.5:sm=255.255
.255.255:ha=xxxxxxxxxxxx

Each of the entries, slipc and enetc, should be entered on a single line. The value of the
ethernet hardware address field in the enetc entry, ha=xxxxxxxxxxxx, should match the
twelve character hardware address listed for the Ethernet Boot Source on the ROM Monitor
menu.
7-4 403 EVB User’s Manual

Both connections use the file \osopen\PLATFORM\samples\boot.img as the source for the
application image to be downloaded onto the board. Be sure that the ht=ethernet keyword is
used for the Ethernet connection entry and that the IP addresses are those of the evaluation
board. Note that the IP address in the slipc entry must match that of the IP address assigned
to the board during serial port set-up. Since a board IP address was not required for
Ethernet set-up, the IP address used in the enetc entry defines the IP address of the board
for the Ethernet connection. If the suggested bootptab entries are used, 7.1.1.5 would be
the board’s Ethernet IP address. Take note of the board’s IP addresses, since they must be
made known to the ROM Monitor.

The services file (no file extention) must also exist in the ETC directory set in the
autoexec.bat file. It must be updated with the port and protocol information for the bootpd
and tftpd servers. To use the servers provided with this package, the following entries must
be included in the services file:

 bootps 67/UDP

 bootpc 68/UDP

 tftp 69/UDP

For the update to take effect, TCP/IP needs to be re-started. This may require a re-boot of
the system and/or a restart of the TCP/IP package. After that, the bootpd and tftpd servers
are ready for use.

7.3.2.1 Automatic startup for Windows 3.1 and Windows NT 3.51

Users may find it convenient to have the bootpd and tftpd servers brought up automatically
when entering Windows. To do this for Windows 3.1, the bootpd and tftpd servers should be
added to your Windows environment Startup window using the following procedure:

With Windows running, select the Program Manager and open the Startup window. Using
the File pulldown menu on the Program Manager, select New to bring up a New Program
Object window. From the New Program Object window, select Program Item and OK to
open the Program Item Properties window. The Program Item Properties window requires
that you provide Description, Command Line and Working Directory values. The following
example shows one possible configuration.

 Description: BOOTPD

 Command Line: BOOTPD -C D -H 7.1.1.4

 Working Directory: D:\OSOPEN\BIN

In the above example, the command line specifies how to invoke the bootpd server, and the
working directory specifies where to find the bootpd server program (bootpd.exe). The -C
parameter is used to specify a drive letter that is used in conjunction with bootptab file
entries. Because the colon is used as a delimiter in bootptab file entries, the -C parameter
is used as a mechanism by the bootpd server to concatonate a drive letter to the beginning
of the hd: field. If the -C option is not specified, the current drive will be used as a default.
The -H parameter is used to specify the ethernet or slip IP address of the host PC (set
during host configuration) to the bootpd server.
403 EVB ROM Monitor 7-5

Use the same procedure to set up the tftpd server. In this case, the Program Item Properties
window entries will describe information used for the tftpd server. The following example
shows a possible configuration:

 Description: TFTPD

 Command Line: TFTPD

 Working Directory: D:\OSOPEN\BIN

If you do not wish to have the bootpd and tftpd servers run automatically upon entering
Windows, they can be run individually from the Windows Program Manager, File, Run menu.
Note that TCP/IP must be up and running before the servers can be run.

7.3.2.1 Automatic startup for Windows 95

You may choose to run "BOOTPD.EXE" and "TFTPD.EXE" automatically every time that
WIndows 95 is started or you can run these programs only when needed. To make these
program run automatically every time WIndows 95 is started perform the following steps:

• Select 'Start' from the Windows 95 task bar.
• Select 'Settings'
• Select 'Taskbar'
• Select 'Start Menu Programs'
• Select 'Add...'
• In the command line field enter the following:

 BOOTPD -c C -h 7.1.1.4
(Where "C" is the driver letter containing the boot image and "7.1.1.4" is host
IP address)

• Select ‘Next’
• In the ‘Select Program Folder’ window, select the ‘Programs/Startup’ folder
• Select ‘Next’
• Select ‘Finished’
• To start "TFTP" follow the above steps, but enter the following in the command

line field:
 TFTPD

The BOOTP and TFTP demons will be started automatically upon the next restart of
Windows 95.

7.3.3 SUN bootp and tftp configuration

The Solaris and SunOS operating systems both provide a tftpd server but do not provide a
bootpd server. For this reason a bootpd server has been included in the EVB software
package under the /usr/osopen/bin directory.
7-6 403 EVB User’s Manual

A sample bootptab file, /usr/osopen/ PLATFORM/samples/bootptab.sam , is included with
the EVB software. This file should be copied to the /etc directory and renamed bootptab if a
bootptab file does not already exist. You will need to log in as root or the superuser (su) to
update or add files in the /etc directory. Entries describing the evaluation board to the host
PC must be added to the bootptab file.

When creating or modifying the bootptab file, the following rules apply:

• blank lines and lines beginning with “#” are ignored
• each entry must be entered on a single line
• each entry must start with a hostname followed by the legends (see the sample

bootptab file for legned descriptions)
• use “:” to separate each legend and leave no spaces between legends
• user must supply the host ip address via the “ip” legend
• if the “hd” (home directory) & “bf” (bootfile) legends are not provided for a particular

entry, the first defined “hd” and “bf” legends in the bootptab file will be taken as default

File entries similar to those below would be suitable:

slipc:hd=/usr//osopen/PLATFORM/samples:bf=boot.img:bs:ip=8.1.1.5:sm=255.255.255.255

enetc:ht=ethernet:hd=/usr/osopen/PLATFORM/samples:bf=boot.img:bs:ip=7.1.1.5:sm=255.
255.255.255:ha=xxxxxxxxxxxx

Each of the entries, slipc and enetc, should be entered on a single line. The value of the
ethernet hardware address field in the enetc entry, ha=xxxxxxxxxxxx, should match the
twelve character hardware address listed for the Ethernet Boot Source on the ROM Monitor
menu.

Both connections use the file /usr/osopen/PLATFORM/samples/boot.img as the source for
the application image to be downloaded onto the board. Be sure that the ht=ethernet
keyword is used for the Ethernet connection entry and that the IP addresses are those of the
evaluation board. Note that the IP address in the slipc entry must match that of the IP
address assigned to the board during serial port set-up. Since a board IP address was not
required for Ethernet set-up, the IP address used in the enetc entry defines the IP address
of the board for the Ethernet connection. If the suggested bootptab entries are used, 7.1.1.5
would be the board’s Ethernet IP address. Take note of the board’s IP addresses, since they
must be made known to the ROM Monitor.

To start the bootpd and tftpd servers:

• log in as root or the superuser (su)
• ensure that the following entries are included in the /etc/services file:

bootps 67/udp

bootpc 68/udp

tftp 69/udp
403 EVB ROM Monitor 7-7

• ensure that the tftp entry in the /etc/inetd.conf file is uncommented and modify
as follows:

tftp dgram udp wait root /usr/etc/in.tftpd in.tftpd -s /

• add an entry for the bootpd server in /etc/inetd.conf as follows:

bootps dgram udp wait root /usr/osopen/bin/bootpd bootpd -i

• reconfigure inetd for the updates made to the inetd.conf file. First find the pro-
cess id for inetd :

ps -ef | grep inetd (Solaris)

ps -auex | grep inetd (SunOS)

Then send a hangup signal to reconfigure inetd:

kill -HUP <process id>

Bootp and tftp configuration is complete.

7.4 Accessing the ROM Monitor

The ROM Monitor expects a real or emulated VT100 type ASCII display attached to serial
port 1 with line protocol parameters of 9600 baud, eight bits per character, no parity, and
one stop bit. Once the terminal connected to SP1 is configured properly, you can access the
ROM Monitor menu options, use the ping test, and load an application onto the evaluation
board.

The ROM Monitor also provides the interface to the RISCWatch debugger. This facility,
along with the image download process, is accessed via an IP network connnection to the
host workstation. Network configuration of the host was discussed earlier in the chapter on
host configuration. The actual connection is either via SLIP (Serial Link Interface Protocol)
running on serial port 2 at speeds up to 56K baud, or via standard Ethernet using the
10Base2 connector on the evaluation board.

7.5 ROM Monitor Operation

The ROM Monitor requires a block of DRAM for its operation and makes some assumptions
about applications loaded on the board. Some of these assumptions may be disregarded if
you do not need the ROM Monitor to interface with a debugger or otherwise support
communication between the host workstation and the EVB.

Applications wishing to coexist with the ROM Monitor must observe the following
constraints:

• Do not alter the EVPR register
• Provide exception vectors for application events as if the EVPR were set to 0x0000

0000. For example, an application’s external interrupt handler should be located at
0x0000 0500. This is handled for you when using OS Open.
7-8 403 EVB User’s Manual

• Use storage addresses between 0x0000 A000 and the end of DRAM only, except for
application vectors.

• Do not start applications lower than address 0x0000 A000

Figure 7-1 shows the address map of the evaluation board under control of the ROM
Monitor. The “folding” characteristics of the high order address bit are not shown.

7.6 Monitor Selections and Submenus
At this point it is assumed that the host has been properly configured, all board connections
have been made, power has been supplied, and the terminal emulator running on the host
has been configured and started successfully. The main menu, shown below, is displayed
after the 403 EVB has been reset and the ROM Monitor completes initialization. Note that
some of the values you see, in particular the ROM Monitor version, the IP addresses, and
the ethernet controller’s hardware address, may differ with those shown below.

Each menu option is described separately in the following sections. “Local” in the context of
the ROM Monitor IP addressing means the IP address assigned to the evaluation board,
while “remote” means the IP address assigned to the host workstation. Using option 8 to
save changes made to the configuration will allow the new values to persist beyond
subsequent power-ons or resets. The ROM Monitor supports this by storing its configuration
data in flash memory.

0x00000000

0xFFFFFFFF

0xFFFE0000

0xF4000000

0x7E000000

0x00002000

0x0000A000

0x00400000

0x00800000

ROM Monitor

Ethernet Port

Serial Port 2
.
.
.

Bank 1 DRAM

Bank 0 DRAM

Reserved

Vectors

Figure 7-1. ROM Monitor Address Map
403 EVB ROM Monitor 7-9

7.6.1 Initial ROM Monitor Menu

The following menu is displayed after the board has been reset:

403GA 2.1 ROM Monitor (8/2/96)

 ------------- System Info -------------
 Processor speed = 33 MHz
 Bus speed = 33 MHz
 Amount of DRAM = 4 MB

 --- Device Configuration ---
 Power-On Test Devices:
 000 Enabled System Memory [RAM]
 001 Enabled Ethernet [ENET]
 004 Enabled Serial Port 2 [S2]
 --
 Boot Sources:
 001 Enabled Ethernet [ENET]

 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Enabled Serial Port 2 [S2]

 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
 005 Enabled Serial Port 1 [S1]

 Baud = 9600

 Debugger : Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->
7-10 403 EVB User’s Manual

7.6.2 Selecting Power-On Tests

Option 1 in the main menu selects power-on tests. These tests are run when the menu exits
and before the ROM loader begins the bootp processing.

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->1

When option 1 is selected, the following submenu is displayed:

--- ENABLE AND DISABLE POWER-ON TESTS ---
 Power-On Test Devices:
 000 Enabled System Memory [RAM]
 001 Enabled Ethernet [ENET]
 004 Enabled Serial Port 2 [S2]

select device to change ->

Selecting a test toggles its testing status. For example, since the System Memory test is
enabled in the above menu, selecting 0 at the prompt disables it.

select device to change ->0 [Selects system memory]

After the selection has been made, the new setting is displayed, followed by the main menu.

select device to change ->0
 [RAM] test is disabled [Message describing change]

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet [ENET]
 004 Enabled Serial Port 2 [S2]

 Boot Sources:
 001 Enabled Ethernet [ENET]

 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Enabled Serial Port 2 [S2]

 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
 005 Enabled Serial Port 1 [S1]

 Baud = 9600

403 EVB ROM Monitor 7-11

 Debugger : Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->

Remember to use Option 8 to save any configuration changes that you may have made. If
the changes are not saved, they will be lost upon an exit from the menu or upon a board
reset.
7-12 403 EVB User’s Manual

7.6.3 Selecting Boot Devices

Option 2 in the main menu enables and disables boot devices.

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->2

When option 2 is selected, the following submenu is displayed:

--- ENABLE AND DISABLE BOOT DEVICES ---
 Boot Sources:
 001 Enabled Ethernet [ENET]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Enabled Serial Port 2 [S2]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
 005 Enabled Serial Port 1 [S1]

 Baud = 9600

select device to change ->

Selecting a device toggles its boot status. Selecting 4, for example, would disable Serial Port
2 as a boot device.

select device to change ->4 [Selects serial port]

After the selection has been made, the new setting is displayed, followed by the main menu.

select device to change ->4
 [S2] boot is disabled [Message describing change]

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet [ENET]
 004 Enabled Serial Port 2 [S2]

 Boot Sources:
 001 Enabled Ethernet [ENET]

 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Serial Port 2 [S2]
403 EVB ROM Monitor 7-13

 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
 005 Enabled Serial Port 1 [S1]

 Baud = 9600

 Debugger : Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->

When the user selects option 0 and exits from the monitor menu, the monitor attempts a
boot of the application image on the host using the enabled boot sources in the order they
are listed. In the above example, a boot would be attempted over Ethernet since it is the first
boot source enabled. If more than one boot source is enabled, an attempt to boot over the
first enabled device will be made. If that attempt fails, a boot over the next enabled device is
attempted.
7-14 403 EVB User’s Manual

7.6.4 Changing IP Addresses

Option 3 in the main menu allows users to change the IP addresses for the EVB and the
host workstation. These addresses are used for bootp processing, debugger
communications, and in the host connectivity “ping” test. Note - the local IP address is that
of the board and the remote IP address is that of the host workstation. The IP addresses
must match those set during host configuration.

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->3

When option 3 is selected, the following submenu is displayed:

--- CHANGE IP ADDRESS ---
 Device List:
 001 Enabled Ethernet [ENET]

 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Serial Port 2 [S2]

 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff

select device to change ->

Select the appropriate device:

select device to change ->1 [Selects Ethernet]

When a valid device is selected, the following submenu is displayed:

 1 - Change local address
 2 - Change remote address
 0 - Return to main menu
->

Make the appropriate selection. To change the board’s IP address, you would select option
1, Change local address:

->1 [Selects the local address]
Current IP address = (7.1.1.5 [Displays the current value]
Enter new IP address ->Enter IP address in dot notation (e. g., 8.1.1.2)
403 EVB ROM Monitor 7-15

Now enter the new IP address in dotted decimal notation:

7.1.1.5

After the selection has been entered, the new configuration is displayed, followed by the
main menu:

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet [ENET]
 004 Enabled Serial Port 2 [S2]

 Boot Sources:
 001 Enabled Ethernet [ENET]

 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Serial Port 2 [S2]

 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
 005 Enabled Serial Port 1 [S1]

 Baud = 9600

 Debugger : Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->

This option should be repeated to set all of the IP addresses to their appropriate values. If
the suggested IP addresses are being used, the local and remote addresses for both the
Ethernet and the Serial Port should match those in the above menu. Remember to save any
configuration changes via option 8.
7-16 403 EVB User’s Manual

7.6.5 Using the Ping Test

Option four in the main menu selects the ping test. The ping test can be used for a basic
assurance test of IP connectivity to the host workstation. It should be performed after setting
the IP addresses to insure host-to-EVB communications. If the ping test fails, users can not
load applications on to the board. The local and remote addresses for the specified device
are used for the source and destination of the ICMP ping packets.

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->4

When option 4 is selected, the current configuration is displayed, followed by another
command prompt:

--- PING TEST ---
 Device List:
 001 Enabled Ethernet [ENET]

 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Serial Port 2 [S2]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff

select device to ping ->

Select the appropriate device to ping (in this case only Ethernet is enabled):

select device to ping ->1 [selects the Ethernet port]

If the board is able to successfully ping the host, a message similar to the following should
appear:

Using [ENET] to ping. press any key to stop.
PING 7.1.1.4 56 data bytes
78 bytes from 7.1.1.4: icmp_seq=0 ttl=255 time=2 ms
78 bytes from 7.1.1.4: icmp_seq=2 ttl=255 time=1 ms
403 EVB ROM Monitor 7-17

Hitting any key terminates the ping test. The main menu is redisplayed following the PING
status report.

--- 7.1.1.4 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->

If the ping test fails:

• Verify that the local and remote IP addresses are set correctly. The local IP address
should be that of the board and the remote IP address should be that of the host. These
IP addresses were assigned during host configuration (see earlier chapter).

• Verify that the cables are connected properly.
• If a local 10Base2 Ethernet network is being used, that is one being used exclusively by

the board and the host, insure that both ends of the Ethernet cable have BNC “T” type
connectors with a terminator at one end.

• Verify TCP/IP is running on the host.

Note - The ROM Monitor will not respond to an inbound ping test from the host unless the
ROM Monitor is in Debug mode (via options 5 and 0) or the ROM Monitor ping test is active
on the EVB at the same time (via option 4).
7-18 403 EVB User’s Manual

7.6.6 Entering the Debugger

Option 5 toggles the feature of the ROM Monitor that allows communication with the host
based source level debugger. Debugging may be enabled/disabled, and saved as part of the
configuration using option 8. The debugger is not actually called by the monitor until after
the user exits the main menu by selecting option 0 (exit and continue):

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet [ENET]
 004 Enabled Serial Port 2 [S2]

 Boot Sources:
 001 Enabled Ethernet [ENET]

 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Serial Port 2 [S2]

 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
 005 Enabled Serial Port 1 [S1]

 Baud = 9600

 Debugger : Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->5
ROM monitor debugger will be active on exit
 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->7

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
403 EVB ROM Monitor 7-19

 001 Enabled Ethernet [ENET]
 004 Enabled Serial Port 2 [S2]

 Boot Sources:
 001 Enabled Ethernet [ENET]

 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Serial Port 2 [S2]

 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
 005 Enabled Serial Port 1 [S1]

 Baud = 9600

 Debugger : Enabled (on exit)

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->0
PowerPC ROM Monitor Debugger

 Waiting for debug command...
 Press any key to exit

Use option 8 to save the state of the ROM Monitor debugger. This option in combination with
option 6, “Toggle automatic menu”, can be used to configure the EVB to automatically wait
for the debugger to attach after power-on.

After enabling the ROM Monitor debugger (via option 5) and selecting option 0, the
RISCWatch debugger can be started on the host and used to load an application onto the
EVB. This is assuming the RISCWatch environment file has been updated for ROM Monitor
communications. Once loaded successfully, the application can be run from the debugger.

The RISCWatch Debugger User’s Guide contains more information on how to use the
debugger to load and execute files with the ROM Monitor as a non-JTAG target. At this
point, it is recommended that users become familiar with the debugging environment by
following the “Quick Start” sample debug session in the debugger’s User’s Guide. This
session takes a user through the basics, including how to use the debugger to load and run
applications on the board.
7-20 403 EVB User’s Manual

7.6.7 Disabling the Automatic Display

Option 6 in the main menu disables the automatic monitor display when the EVB boots up.
After option 6 has been selected and the configuration has been saved (via Option 8), the
menu display is disabled but continues to function until the user exits from the main menu.
Following the next power-on or reset, the menu is no longer automatically displayed. This
allows the user’s image to be downloaded automatically with no menu input required. This
feature also allows a user to download an application with no cable connected to the serial
port 1 on the EVB (that is, without a terminal emulator).

After the automatic menu display has been disabled, the main menu can be accessed
(assuming a terminal emulator is attached successfully to SP1 on the EVB) by pressing any
key during the first five seconds that the EVB is booting. Otherwise, application download
processing starts without displaying the main menu.
403 EVB ROM Monitor 7-21

7.6.8 Displaying the Current Configura tion

Option 7 displays the current configuration.

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->7

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet [ENET]
 004 Enabled Serial Port 2 [S2]

 Boot Sources:
 001 Enabled Ethernet [ENET]

 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Serial Port 2 [S2]

 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
 005 Enabled Serial Port 1 [S1]

 Baud = 9600

 Debugger : Enabled (on exit)

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
 ->

When a menu operation is selected to alter configuration settings, the current configuration
is automatically redisplayed.
7-22 403 EVB User’s Manual

7.6.9 Saving the Current Configuration

Option 8 saves the current configuration for subsequent power-ons/resets..

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->8
Configuration has been saved
 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
 ->

The configuration is saved in the flash memory on the evaluation board and is retained until
a new configuration is subsequently saved.
403 EVB ROM Monitor 7-23

7.6.10 Setting the Baud Rate for S1 Boots

Option 9 provides a mechanism for setting the baud rate to be used by serial port 1 when it
is used as a device to download programs. Downloading over serial port 1 requires the use
of a VT100 terminal emulator that supports kermit binary file transfer over serial port 1.
RS/6000 and Sun users should note that the TIP terminal emulator does not support kermit
binary file transfers. Windows 3.1 users can use the Windows Terminal program to perform
kermit binary file transfers, but the baud rate is limited to 19 200. Windows 95 users can use
HyperTerminal to perform kermit file tranfers at upto 115 200 baud. The kermit terminal
emulator, available as shareware from the http://www.columbia.edu/kermit Internet site,
can be used on any of the supported hosts to download programs over serial port 1 at
speeds upto 115 200 baud.

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet [ENET]
 004 Enabled Serial Port 2 [S2]

 Boot Sources:
 001 Enabled Ethernet [ENET]

 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Serial Port 2 [S2]

 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
 005 Enabled Serial Port 1 [S1]

 Debugger : Enabled (on exit)

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
 ->9

 Select a baud rate for S1 boot
 1 - 9600
 2 - 19200
 3 - 28800
 4 - 38400
 5 - 57600
 6 - 115200
 =>4

 --- Device Configuration ---
7-24 403 EVB User’s Manual

 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet [ENET]
 004 Enabled Serial Port 2 [S2]

 Boot Sources:
 001 Enabled Ethernet [ENET]

 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Serial Port 2 [S2]

 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
 005 Enabled Serial Port 1 [S1]
 Baud = 38400 [download baud rate appears here]

 Debugger : Disabled (on exit)

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->

Use Option 8 to save the selected speed after reset and power-on.
403 EVB ROM Monitor 7-25

7.6.11 S1 Boot

To perform an S1 boot you must have a terminal emulator which supports kermit file
transfer. The file must be a valid boot image and must be sent in binary mode. If you have
selected to use a baud rate other than 9600, you must set the terminal emulator to run at
that speed before loading the file and set the speed back to 9600 after the down-load is
complete. The following example shows loading the “usr_samp.img” file:

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Disabled Ethernet [ENET]
 004 Disabled Serial Port 2 [S2]

 Boot Sources:
 001 Disabled Ethernet [ENET]
 local=7.1.1.5 remote=7.1.14 hwaddr=1000abcdef55
 004 Disabled Serial Port 2 [S2]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
 005 Enabled Serial Port 1 [S1]
 Baud = 38400

 Debugger: Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->0
Booting from [S1] Serial Port 1...

PLEASE NOTE: You must now...

 a. Exit from terminal emulation mode
 b. Modify the baud rate of your host session
 c. Transmit a file to the target in binary mode
 d. Reset the host baud rate to 9600
 e. Reenter terminal emulation mode
 f. Hit enter to execute the downloaded program

At this point kermit users must get to the terminal emulator command mode and change the
line speed to match what was selected by option 9 and tell the terminal emulator to send the
file in binary format.
7-26 403 EVB User’s Manual

^\c (Cntrl-\c)
(Back at waterdeep)
C-Kermit>set speed 38400
/dev/tty0, 38400 bps
C-Kermit>set file type bin

You can now load the file.

C-Kermit>send usr_samp.img
SF
Type escape character (^\) followed by:
X to cancel file, CR to resend current packet
Z to cancel group, A for status report
E to send Error packet, Ctrl-C to quit immediately:

Sending: usr_samp.img => USR_SAMP.IMG
Size: 164864, Type: binary
..
...
.... [OK]
ZB

When loading is completed, you must change the baud rate back to 9600 bps before
continuing.

C-Kermit>set speed 9600
/dev/tty0, 9600 bps

After setting the baud rate back to 9600 bps, re-connect to your terminal emulator and press
enter to complete the down-load.

C-Kermit>con
Connecting to /dev/tty0, speed 9600.
The escape character is Ctrl-\ (ASCII 28, FS)
Type the escape character followed by C to get back,
or followed by ? to see other options

Loaded successfully ...
Entry point at 0x22f20 ...

Hello 403 user!

Your ROM Monitor version is : 2.1

Your 604 Evaluation Board has 33554432 bytes of DRAM installed.

Your Ethernet controller’s network address is : 1000abcdef55

usr_samp done!
403 EVB ROM Monitor 7-27

Assuming the S1 boot baud rate has been set to 38400 and option 0 has been selected to
exit the ROM Monitor menu and initiate a load, Windows 95 HyperTerminal users can
initiate the kermit binary file transfer by performing the following steps :

• Select Call and then Disconnect
• Select File, Properties, Configure and set the baud to match the baud rate set via

ROM Monitor option 9. In this case, it is 38400.
• Select OK and OK again
• Select Call and then Connect
• Select Transfer, Send File and type the filename of the file to load. Set the Protocol to

Kermit
• Select Send

Upon successful completion of the transfer, the baud rate must be changed back to 9600:

• Select Call and then Disconnect
• Select File, Properties, Configure and set the baud to 9600
• Select OK and OK again
• Select Call and then Connect
• Hit Enter to complete the down-load sequence

7.6.12 Exiting the Main Menu

Option 0 exits from the main menu, leaving the monitor active. If the debugger is active prior
to selecting option 0, the ROM Monitor waits for the user to start the debugger on the host.
In all other cases, option 0 initiates an attempt by the ROM Monitor to load an application
from the host to the EVB over the enabled boot device(s). When downloading over the
ethernet or SLIP (S2), the host bootp and tftp configuration must be completed for the ROM
Monitor to load successfully. Once loaded successfully, the application is executed.

When serial port 1 is used, the ROM Monitor requires the user to follow additional
instructions to complete the download. The example shown here describes the sequence
required when programs are downloaded over serial port 1.

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Disabled Ethernet [ENET]
 004 Disabled Serial Port 2 [S2]

 Boot Sources:
 001 Disabled Ethernet [ENET]

 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Serial Port 2 [S2]

 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
 005 Enabled Serial Port 1 [S1]
 Baud = 38400

 Debugger : Enabled (on exit)
7-28 403 EVB User’s Manual

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
 ->0
Booting from [S1] Serial Port 1...

PLEASE NOTE: You must now...

 a. Exit from terminal emulation mode
 b. Modify the baud rate of your host session
 c. Transmit a file to the target in binary mode
 d. Reset the host baud rate to 9600
 e. Re-enter terminal emulation mode
 f. Hit enter to execute the downloaded program

The ROM Monitor will now wait for you to follow the above steps. The idea is that you must
temporarily modify the terminal emulation session baud rate to match the baud rate
expected by the ROM Monitor for the serial port 1 download. The file must then be
transferred to the EVB from the host. The baud rate is restored to 9600 so that terminal
emulation support can function after the program has been downloaded, The ROM Monitor
will wait for you to restore the baud rate (9600) and hit enter prior to executing the
downloaded program. This prevents any program I/O from being lost or incorrectly displayed
when it begins execution.

The following is an example of what you might see when the program is allowed to run:

 Loaded successfully ...
 Entry point at 0x23130 ...
 .
 .
 .
403 EVB ROM Monitor 7-29

7.7 ROM Monitor User Functions

The ROM Monitor contains several functions that are available to user programs. The
prototypes of these functions can be found in the usr_func.h file in the
/usr/osopen/PLATFORM/include directory (\osopen\PLATFORM\include for PC users).
These functions include:

• send_packet_on_bootdev() - allows an IP packet to be sent over the device that was
 used to load the application program (either the ethernet or the second serial
 port, SP2).

• sh_register() - used to register a function that will be called when an IP packet is
 received by the ROM Monitor over the boot device.

• get_board_cfg() - reads the configuration data associated with the board.
• enet_send_macframe() - allows a frame to be sent over the ethernet.
• enet_register() - allows the user to register an IP address for the ethernet (an IP

address different from that assigned to the ROM Monitor) and to specify a func-
tion to be called when a frame arrives for that address.

• enetisThere() - determines if the ethernet chip is present on the board.
• enetInit() - initializes the ethernet.
• getchar() - reads one character at a time from the keyboard buffer over the first serial

 port (SP1).
• s1putchar() - writes one character to the first serial port (SP1).

Applications must follow a predefined protocol to access ROM Monitor user functions. An
example showing the proper calling procedures are included in the usr_samp.c sample
program in the samples directory. This sample program calls the get_board_cfg() ROM
Monitor function to determine the amount of DRAM installed on the board. This program will
be run as a sample program in the next chapter.

7.8 Flash Update Utility

The openbios/flash directory contains all the code you need to re-program the flash
memory on the EVB. This utility takes a binary image file targeted for the ROM as input, and
generates a loadable file that will re-program the flash memory with the data in the binary
input file. The file can then be loaded by an existing ROM Monitor version (which will be
over-written upon successful completion of the loaded program) or via RISCWatch JTAG.

IMPORTANT: Please see the readme.txt file in the openbios/flash directory for important
information regarding the use of this tool.

Be aware that if you use the ROM Monitor bootp or the RISCWatch ROM Monitor mode
download process to re-program the flash, and the program loaded contains errors that will
not allow you to download images in the same manner, your flash may be corrupted and
rendered useless. In this case you will need to use RISCWatch JTAG or a ROM burner to
re-program the flash.

RISCWatch JTAG users will find a RISCWatch command file, rw_flash.cmd in the
openbios/flash directory. This command file can be used to prepare the EVB, load the flash
7-30 403 EVB User’s Manual

update program containing the new binary image to program into the ROM, and start it
running. This method can be used to program new flash parts, or to re-program a corrupted
flash part when normal ROM Monitor downloads are not possible or inconvenient. When
using this command file, RISCWatch must be used in JTAG mode.
403 EVB ROM Monitor 7-31

7-32 403 EVB User’s Manual

8
9

8
403 EVB Sample Applications

This chapter describes the steps necessary to build and run the sample programs included
in the 403 EVB software support package. This code is separate from ROM monitor code
described in Chapter 7.

8.1 Overview
In the High C version of the EVB kit, the sample application programs are compiled,
assembled, and linked using the IBM High C/C++ compiler, assembler, and linker. OS
Open libraries are used during the link step to create an executable file in ELF format. This
file includes the OS Open bootstrap code as well as other OS Open functions and is
referred to as a boot file. One of the tools provided in the software support package,
eimgbld , is then used to convert the boot file into the format used by the ROM Monitor to
load programs onto the evaluation board (see Appendix C for more information on the ROM
Monitor load format). The output of the eimgbld step is a file referred to as a boot image file.

Processing is similar for the RISC/6000 XCOFF version of the EVB kit. Programs are
compiled, assembled, and linked using the XCOFF XLC compiler, assembler, and linker,
and the boot image files are created using the nimgbld tool supplied with the EVB software.

There are several ways to load and execute a boot image file. One way is to use the ROM
Monitor to load and execute the file. Network loads over Ethernet or SLIP require that the
host contain the bootp and tftp servers and be properly configured to support the bootp and
tftp protocols (see the previous chapters on host configuration and ROM Monitor setup).
Loads over serial port 1 require a terminal emulator that supports the kermit transfer
protocol. A ROM Monitor load is initiated via option 0 from the ROM Monitor main menu.

Another way to load and execute the boot image file is to use the RISCWatch debugger in
ROM monitor mode. To bring up RISCWatch in ROM Monitor mode (see the RISCWatch
User’s Guide for details), you must update the RISCWatch environment file for ROM
Monitor communications, enable the ROM Monitor debugger (via option 5), exit the ROM
Monitor menu (via option 0) and then start up RISCWatch on the host system. The
RISCWatch load image command can then be used to load the boot image file onto the
board. Once loaded successfully, the attach 42 and logoff commands can be issued to
execute the program. The attach 42 command informs the ROM Monitor that a process will
be running and the logoff command tells the ROM Monitor to exit debug mode and start the
execution of the program. After program execution, users should quit and restart
RISCWatch before loading another boot image file to run. Without quitting RISCWatch,
subsequent boot image execution can not be guaranteed. (Note: RISCWatch also provides
403 EVB Sample Applications 8-1

the means to load a boot file (as opposed to a boot image file) via its load file command.
See the “Running Your Programs” section in the RISCWatch User’s Guide for additional
information. This section also describes the steps required to load and debug boot and boot
image files.)

8.2 ROM Monitor Flash Image

The flash memory on the EVB comes preprogrammed with a specific version of the ROM
Monitor. This version may not be latest version of the ROM Monitor. To run the samples in
the software support package, the latest version should be used. The latest version of the
ROM Monitor is included in the software support package in the file:

• /usr/osopen/PLATFORM/openbios/lib/rom_***.img (RS6K & SUN)

• \osopen\PLATFORM\openbios\lib\rom_***.img (PC)

where *** is equal to the ROM Monitor version. If the *** version number of the ROM Monitor
in the software support package does not match the version number displayed by the
monitor when it comes up on the board, you can load the more recent version of the
monitor provided in the software support package to re-program the flash memory.

The rom_***.img file can be loaded using the ROM Monitor or the RISCWatch debugger.
For it to load properly upon the selection of ROM Monitor option 0, it must be copied to
boot.img if the suggested bootptab entry was used (see the previous chapter on bootp
configuration).

To load using RISCWatch, enable the ROM Monitor debugger (via option 5), exit the ROM
Monitor menu (via option 0), start RISCWatch on the host system (make sure the
RISCWatch environment file is setup for ROM Monitor communications), then use the
following RISCWatch commands to load and execute the rom_***.img image file:

• load image /usr/osopen/PLATFORM/openbios/lib/rom_***.img (RS6K &
SUN)

• load image \osopen\PLATFORM\openbios\lib\rom_***.img (PC)
• attach 42
• logoff

You will see screen information similar to that shown below. Lines preceded by “$$” are
annotation for this example and do not appear on the screen.

$$ Standard ROM Monitor load screen below
403GA 1.2 ROM Monitor (9/5/95)
$$ Version 1.2 already installed corresponds to rom_12.img

 ------------- System Info -------------
 Processor speed = 33 MHz
 Bus speed = 33 MHz
 Amount of DRAM = 4 MB

8-2 403 EVB User’s Manual

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet [ENET]
 004 Enabled Serial Port 2 [S2]

 Boot Sources:
 001 Enabled Ethernet [ENET]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Serial Port 2 [S2]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
 004 Disabled Serial Port 1 [S1]
 Baud = 38400

 Debugger: Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 0 - Exit menu and continue
->0
$$ Selection of 0 causes evaluation board to be loaded. Previous
$$ arrangements must have been made to place the new ROM Monitor
$$ image (for ex. /usr/osopen/PLATFORM/openbios/lib/rom_13.img) in the
$$ place where bootp expects to find it (for ex. boot.img)
Booting from [ENET] Ethernet...
Sending bootp request ...

Loading file “/usr/osopen/PLATFORM/samples/boot.img” ...
Sending tftp boot request ...
Transfer Complete ...
Loaded successfully ...
Entry point at 0x10320 ...

$$ following information is from the ROM Monitor update program
############### IBM 4XX Evaluation Kit FLASH Update ################
 ROM Monitor Version 1.3

$$ The universally administered hardware address for the Ethernet
$$ controller is kept in the flash ROM and is displayed here.
403 EVB Sample Applications 8-3

$$ Do not change this value for normal ROM Monitor updates
Network Address =
1000abcdef55

Do you wish to change Network Address? (y or n) n

$$ Heed the following warning. The ROM Monitor image could be
$$ rendered unusable and the board useless until the flash ROM is
$$ replaced.
 WARNING: You are about to re-program your ROM Monitor FLASH
 image. Do NOT turn off power or press reset
 until this procedure is completed. Otherwise
 the card may be permanently damaged!!!

Do you wish to continue? (y or n)y

Verifying new FLASH Image...
131072 matches, 0 mismatches

Update complete!
All done!

8.3 Using the Software Samples
The sample application programs are in /usr/osopen/PLATFORM/samples
(\osopen\PLATFORM\samples for PC users). It is recommended that users first build and
run the Dhrystone, mmu_samp, usr_samp, and timesamp sample programs as detailed
below, to become familiar with the working environment. These sample programs use
basic_os.c to provide a minimal OS Open configuration.

Additional details regarding the sample programs and application development in general
can be found in the “Developing OS Open Applications” chapter in the OS Open User’s
Guide. That chapter should be referenced for instructions on building and running the
applprog, benchmk, mailsamp, and cat sample programs.

The sample makefile contains the directives needed to build all the sample programs. It is
suggested that this makefile be used as the starting point for building subsequent user
applications.

Before attempting to build the samples, ensure the osopen/bin directory and the directory
that contains the compiler, are part of your execution path (these steps should be modified
accordingly based on where the compiler and the software support package were actually
installed):

For RS/6000 and SUN hosts :

• issue the command:

 export PATH=$PATH:/usr/osopen/bin:/usr/highcppc/bin
8-4 403 EVB User’s Manual

 OR (to update your PATH permanently)

• Edit ~/.profile using an editor such as vi .
• Add PATH=$PATH:/usr/osopen/bin:/usr/highcppc/bin as a line in your profile

before the line “export PATH”.
• Run . ~/.profile to update your profile.

For PC hosts:

• Edit AUTOEXEC.BAT using an editor such as e (you should back this file up
before editing).

• If the following statement is missing, add it to the end of the file.

 SET PATH=C:\highcppc\bin;C:\osopen\bin;%PATH%;

• Run AUTOEXEC.BAT to update your path.

NOTE: The "make" utility supplied with your evaluation kit may not run under a Windows
NT command prompt that is started by "cmd.exe". To avoid potential problems, start a
DOS command prompt using the command "COMMAND.COM" and compile from there.
Also, some Windows 95 users may receive a ‘Program Requires MS-DOS Mode’ pop-up
message when compiling. To prevent this annoying message from occurring, select
‘Properties’ for the MS-DOS window you are compiling from, then select ‘Advanced’ and
ensure that the ‘Suggest MS-DOS mode as necessary’ box is not checked.

8.3.1 Building and Running the Dhrystone Benc hmark
The Dhrystone benchmark is a commonly available integer benchmark. Since the main loop
of this benchmark fits into the caches of many processors, its validity as a predictor of
system performance may be suspect. It is included here as an example of an application to
be built, loaded onto the evaluation board, and executed.

To build the Dhrystone benchmark, enter the command “make dhry ” from the command
line while in the samples directory. The makefile will compile the Dhrystone source files, link
the resulting object files with the support libraries, and produce the boot file, dhry, and the
boot image file, dhry.img .

If the bootptab entry suggested in the chapter on “Host Configuration” was used, then
dhry.img must be renamed or copied to boot.img in order to be selected by the ROM
Monitor load process. Select option 0 from the ROM Monitor screen to load and run the
image.

To load using RISCWatch, enable the ROM Monitor debugger (via option 5), exit the ROM
Monitor menu (via option 0), start RISCWatch on the host system (make sure the
RISCWatch environment file is setup for ROM Monitor communications), then use the
RISCWatch load image command to load the dhry.img file. Once successfully loaded,
issue the attach 42 and logoff commands to return control to the ROM Monitor and initiate
the run.
403 EVB Sample Applications 8-5

You should see the following messages (or ones like them) appear on the ROM monitor
screen. Explanations preceded by ## do not appear on the screen but are added here as
clarification.

Booting from [ENET] Ethernet...
Sending bootp request ...
This requests the Host workstation to return the name of the boot image

Loading file “/usr/osopen/PLATFORM/samples/boot.img” ...
Sending tftp boot request ...
Having obtained the file name, the ROM monitor uses tftp to retrieve the file from the
host workstation
Transfer Complete ...
Loaded successfully ...
Entry point at 0x10238 ...
Having loaded an image, the ROM monitor is now transfering control to the application
subsequent messages are from the application

Dhrystone Benchmark, Version 2.1 (Language: C)
Program compiled without ‘register’ attribute
Please give the number of runs through the benchmark:

At this point, enter the number of desired iterations. The test is designed not to give results if
the selected iterations completes in less two seconds, so pick a large number (≥ 200000).
After the test completes, a check screen will be displayed, followed by the benchmark
results. The results may vary based on the system environment.

8.3.2 Building and Running the usr_samp Program

The usr_samp.c program is included as a sample to be built and run on the EVB. It’s a
simple program that shows how to properly call the get_board_cfg() ROM Monitor user
function to determine the ROM Monitor version, the amount of DRAM installed on the board
and the Ethernet controller’s MAC address. Developers interested in using any of the ROM
Monitor user functions should use this program as a guide.

To build the usr_samp program, enter the command “make usr_samp ” from the command
line while in the samples directory. The makefile will compile the usr_samp.c file, link the
resulting object file with the support libraries, and produce the boot file, usr_samp , and the
boot image file, usr_samp.img .

If the suggested bootptab was used, then usr_samp.img must be renamed or copied to
boot.img in order to be selected by the Rom Monitor load process.Select option 0 from the
ROM Monitor screen to load and run the image.
8-6 403 EVB User’s Manual

To load using RISCWatch, enable the ROM Monitor debugger (via option 5), exit the ROM
Monitor menu (via option 0), start RISCWatch on the host system (make sure the
RISCWatch environment file is setup for ROM Monitor communications), then use the
RISCWatch load image command to load the usr_samp.img file. Once successfully
loaded, issue the attach 42 and logoff commands to return control to the ROM Monitor and
initiate the run.

You should see the following messages (or ones like them) appear on the ROM Monitor
screen.

Booting from [ENET] Ethernet...
Sending bootp request ...

Loading file “/usr/osopen/PLATFORM/samples/boot.img” ...
Sending tftp boot request ...
Transfer Complete ...
Loaded successfully ...
Entry point at 0x10180 ...

Hello 403 user!

Your ROM Monitor version is : 7.5

Your 403 Evaluation Board has 8388608 bytes of DRAM installed.

Your Ethernet controller’s network address is : 1000abcdef55

usr_samp done!

 The DRAM amount listed should match the amount installed on the board.

8.3.3 Building and Running the timesamp Program

The timesamp.c program is included as a sample to be built and run on the EVB. This
program is an example of how to properly time a particular function or benchmark. The user
must know and define the time base frequency (the number of times the time base register
is updated per second) in the timesamp.c to ensure the timing calculations are accurate.

To build the timesamp program, enter the command “make timesamp ” from the command
line while in the samples directory. The makefile will compile the timesamp.c file, link the
resulting object file with the support libraries, and produce the boot file, timesamp , and the
boot image file, timesamp.img .

If the suggested bootptab was used, then timesamp.img must be renamed or copied to
boot.img in order to be selected by the Rom Monitor load process. Select option 0 from the
ROM Monitor screen to load and run the image.
403 EVB Sample Applications 8-7

To load using RISCWatch, enable the ROM Monitor debugger (via option 5), exit the ROM
Monitor menu (via option 0), start RISCWatch on the host system (make sure the
RISCWatch environment file is setup for ROM Monitor communications), then use the
RISCWatch load image command to load the timesamp.img file. Once successfully
loaded, issue the attach 42 and logoff commands to return control to the ROM Monitor and
initiate the run.

You should see the following messages (or ones like them) appear on the ROM Monitor
screen.

Booting from [ENET] Ethernet...
Sending bootp request ...

Loading file “/usr/osopen/PLATFORM/samples/boot.img” ...
Sending tftp boot request ...
Transfer Complete ...
Loaded successfully ...
Entry point at 0x10180 ...

Please give the number of runs through the benchmark:

At this point, enter the desired number of runs through the function or benchmark being
timed. In this sample, the function being timed should execute for approximately a second,
so a number between 1 and 10 would suffice.

8.3.4 Building and Running the mmu_samp Program

The mmu_samp.c program is included as a sample to be built and run on an evaluation
board with a 403GC or 403GCX processor. It demonstrates some of the features of the
403GC(X)’s Memory Manager Unit. It uses the MMU to protect read-only and non-
executable pages of memory. It also sets a read-only page at the bottom of the stack to
immediately detect stack overflow errors. The sample also makes a copy of the ROM code
in RAM and translates the addresses to make the copy appear to be at its original location.
This allows you to set software breakpoints in the code. For more information on
programming the MMU refer to the 403GC Embedded Controller User’s Manual or the
403GCX Embedded Controller User’s Manual

To understand how this sample works, you must understand how the memory is used. The
file “mmu_samp.mpf” is used on the link step of this sample to achieve the required
alignment of sections. The memory is setup as follows:

• 0x00000000 to 0x00001FFF contains 403GC(X) exception vectors and is mapped as
two 4K pages, readable and executable.

• 0x00002000 to 0x00009FFF is used by the ROM monitor and is mapped as eight 4K
pages, readable, writable and executable

• 0x0000A000 to 0x0000FFFF is unused.
• 0x00010000 to 0x0001BFFF is the sample’s read-only data and text sections. It is

mapped as three 16K pages, readable and executable.
8-8 403 EVB User’s Manual

• 0x0001C000 to 0x0001C3FF is the sample’s data section and is mapped as one 1K
page, readable and writable.

• 0x0001C400 to 0x0001FFFF is unused.
• 0x00020000 to 0x0003FFFF contains the flash contents and is mapped to 0xFFFE0000

through 0xFFFFFFFF as two 64K readable and executable pages.
• 0x00040000 to 0x000403FF contains the sample’s bss section and is mapped as one

1K page, readable and writable.
• 0x00040400 to 0x000407FF is a 1K read-only page that detect stack overflow errors.
• 0x00040800 to 0x00043FFF is the sample’s stack area. It consists of two 1K pages and

three 4K pages, readable and writable.
• 0x00044000 to 0x0007FFFFF is heap area and consists of three 16K, three 64K, three

256K, three 1M and one 4M pages, readable and writable. The evaluation kit software
will automatically assign stack and heap area following bss to the end of memory.

• 0x40000000 to 0x400003FF is the serial port memory-mapped I/O area. It is a 1K page,
readable, writable, cache-inhibited and guarded.

Header file “tlbdef.h” is provided with the sample. It contains useful definitions for managing
the TLB.

File “accvaddr.c” contains a sample virtual memory access function. This is used in
conjunction with the ROM monitor debugger. If instruction or data translation is active, the
debugger calls a helper function to read and write memory. Some applications may overflow
the TLB and the software will manage TLB replacements on misses. In this case, a more
elaborate function should be written, that understands the TLB replacement algorithms. For
applications that fit in the TLB, this sample function will work fine.

To build the mmu_samp program, enter the command “make mmu_samp ” from the
command line while in the samples directory. The makefile will compile the mmu_samp.c
and accvaddr.c files, link the resulting object files with the support libraries, and produce the
ELF format boot file, mmu_samp , and the boot image file, mmu_samp.img .

If the suggested bootptab was used, then mmu_samp.img must be renamed or copied to
boot.img in order to be selected by the Rom Monitor load process. Select option 0 from the
ROM Monitor screen to load and run the image.

For debugger loads use the RISCWatch load image command to load the mmu_samp.img
file. Once successfully loaded, issue the attach 42 and logoff commands to return control
to the ROM Monitor and initiate the run.

You should see the following messages (or ones like them) appear on the ROM Monitor
screen.

Booting from [ENET] Ethernet...
Sending bootp request ...

Loading file “/usr/osopen/PLATFORM/samples/boot.img” ...
Sending tftp boot request ...
Transfer Complete ...
Loaded successfully ...
Entry point at 0x101f0 ...
403 EVB Sample Applications 8-9

Hello 403 user!

Your ROM Monitor version is : 6.2

Your 403 Evaluation Board has 4194304 bytes of DRAM installed.

 Your Ethernet controller’s network address is : 1000abcdef55

Force data storage error...

PANIC!!!================================
failing thread id =0x 3f7148
fault number =0x d
failing address =0x 1100

If you receive the following messages, your evaluation board does not contain a 403GC or
403GCX processor and this sample can not be run.

Booting from [ENET] Ethernet...
Sending bootp request ...

Loading file “/usr/osopen/PLATFORM/samples/boot.img” ...
Sending tftp boot request ...
Transfer Complete ...
Loaded successfully ...
Entry point at 0x101f0 ...
This sample cannot be run on this processor
Return from main function. rc: -1

8.4 Resolving Execution Problems

Configuration errors in the network or bootp tables cause most of the problems with running
the sample applications. This section contains information that will aid users in identifying
common problems.

8.4.1 Using the Ping Test on the ROM Monitor to Verify Connectivity

If the ping test fails, verify that TCP/IP is running on the host system and that the IP
addresses on the selected interface are correct. The local address refers to the IP address
of the evaluation board, and the remote refers to the host workstation address. The host
workstation address must match the one selected during configuration of the host network
interface. Also consult your TCP/IP documentation to insure proper network configuration.
8-10 403 EVB User’s Manual

8.4.2 bootp and tftp Servers (Daemons) for ROM Monitor loads

Insure that the bootp and tftp servers are started on the host workstation. If possible, use the
tftp command from another workstation to retrieve the load image. If this fails, make sure
the image exists in the target directory and that it is readable by “others”. If the tftp transfer
succeeds, check the bootptab entry in the bootptab file to insure that it specifies the correct
interface and IP address of the evaluation board.

8.5 Using OS Open Functions

OS Open provides the following major classes of functions for the embedded programming
environment:

• Thread management

The unit of execution context for OS Open is the thread as defined by POSIX standards.
Functions are provided to create threads with various scheduling and execution attributes.
To manage the execution environment, serialization and synchronization primitives are part
of OS Open. The system also provides functions to associate data with specific threads.

• Storage management

OS Open supports variable block allocations in the form of a heap. Functions are provided
to extend the heap, query heap usage, and allocate storage to meet alignment constraints.
OS Open also provides an independent storage management mechanism to allocate fixed
blocks of storage in constant time.

• Interrupt and fault support

OS Open provides functions to attach user-written code to any of the processor exceptions
and interrupts. Most of the functions of OS Open can be used in these interrupt handlers,
except for those functions that suspend execution or are valid only in the context of an
executing thread. When the underlying hardware platforms support it, OS Open platform-
specific libraries provide additional functions to attach user-written code to external
interrupts supported on the platforms.

• Clock and timer management

OS Open functions provide time-of-day clock support and the ability to create, use, and
destroy timers. These timers can be one-time or periodic.

• Device support

OS Open functions support the installation of user-written device drivers to provide
character special files, block special files, and logical file systems. Low-level POSIX I/O
(read, write) as well as ANSI C stream (fget, fput) functions are provided for device and
regular file access.
403 EVB Sample Applications 8-11

• ANSI C library support

OS Open provides a comprehensive set of ANSI C functions, providing support for string
manipulation, memory management, string-to-number conversion, input/output, nonlocal
jumps, and variable arguments.

• Pseudo device driver support

OS Open provides several functions, such as TTY and DOS file system functions, that are
installed and managed like device drivers, but they do not manipulate actual hardware nor
do they have platform or device dependencies.

OS Open provides functions that create and manage TCP/IP sockets. Network interface
functions for Token Ring, Ethernet, and Serial Line Interface Protocol (SLIP) are also
provided. With the TCP/IP protocol stack and network interfaces, additional functions are
provided that implement several popular networking utilities, such as ping, ifconfig, ftp, and
telnet.

• Debug functions and kernel abstract data types

OS Open provides functions that set, clear, and query breakpoints. OS Open features an
internal circular trace buffer for operating system and user events. Also, functions are
provided that dump kernel data objects in a readable form.
8-12 403 EVB User’s Manual

9

9
Application Libraries and Tools

This chapter describes some of the application libraries and tools available in the EVB
software support package. See the OS Open User’s Guide and Programmer’s Reference for
additional information.

9.1 OS Open Libraries

The OS Open operating system comprises a real-time executive and optional libraries of
functions and macros.

The real-time executive provides a operating system core for embedded applications.
Depending on an application’s requirements, an embedded application may also
incorporate one or more optional libraries.

This modular approach enables embedded system developers to scale an OS Open
operating system to match their application requirements. Because unneeded features are
not present, an OS Open configuration can provide savings in system hardware,
initialization and reset time, and program size.

Table 9-1 summarizes the OS Open libraries, described in the OS Open User’s Guide and in
this user’s guide. For detailed descriptions of the OS Open functions and macros, refer to
the OS Open Programmer’s Reference.

Table 9-1. OS Open Libraries

Library File Name Platforms

Alignment Exception Support Library alignLib.a Common

ANSI C Library cLib.a Common

ANSI C Math Library mathLib.a Common

ANSI C I/O Library fsLib.a Common

Block Buffer Library bbuffLib.a Common

Bios Ethernet Library benetLib.a 403 EVB

Boot Library(DRAM) bootlLib.a 403 EVB

Boot Library(ROM) bootrLib.a 403 EVB
Application Libraries and Tools 9-1

ROM Monitor Ethernet Interface Library benetLib.a 403 EVB

C++ runtime support (High C++™ support) Library cppLib.a, crti.o,
crtn.o, mwdctor.o

ELF

C++ runtime support (C Set ++™ support) Library cpprtLib.a XCOFF

Card Services/enabler software layer for PCMCIA
support

csLib.a Common

Clock Support Library clockLib.a 403 EVB

Debug Support Library dbLib.a Common

Device and File Support Library devLib.a Common

DOS File System Support Library fatLib.a Common

Dynamic Loader Library ldrLib.a Common

Ethernet Support Library enetLib.a 403 EVB

Extended Serial Communication Support Library esccLib.a 403 EVB

File Transfer Protocol Support Library ftpLib.a Common

Floating Point Library fpeLib.a 403 EVB ELF

Floating Point Emulation Library fpCSLib.a Common

Input/output Support Library ioLib.a 403 EVB

Kernel Abstract Data Types Library kadtLib.a Common

Network Support Library netLib.a Common

NFS Support Library nfsLib.a Common

OpenShell shell.o Common

PCMCIA ATA/IDE Hard disk device driver pataLib.a Common

PowerPC Low Level Access Support Library ppcLib.a 403 EVB

Queue Library queLib.a Common

RAM Disk Library ramdLib.a Common

Rate Monotonic Scheduling (RMS) Library rmsLib.a Common

Remote Source Level Debug Library rsldLib.a Common

Ring Buffer Library rngLib.a Common

RPC Support Library rpcLib.a Common

Table 9-1. OS Open Libraries

Library File Name Platforms
9-2 403 EVB User’s Manual

The real-time executive, the only required component in an OS Open operating system,
provides a full set of basic operating system services:

• Thread management
• Virtual memory management for OS Open with Virtual Memory
• Storage management
• Signals
• Clocks and timers
• Interrupt and fault handling
• Message queues
• Semaphores
• Trace buffer support
• Miscellaneous services

The C functions for the real-time executive functions are in two libraries, rtx.o and rtxLib.a .
The rtx.o library contains the OS Open real-time executive. The rtxLib.a library contains
interface routines to OS Open functions, and is linked with application programs to resolve
calls to the real-time executive.

Runtime Library runlib.a Common

SCSI Support Library scsiLib.a Common

Serial Support Library asyncLib.a 403 EVB

Socket Services for PCMCIA support ssLib.a Common

Symbol Support Library symLib.a Common

TCP/IP Protocol Support Library tcpipLib.a Common

Telnet Daemon Support Library tnetdLib.a Common

Telnet Client Support Library telnet.o Common

The Real-time Executive rtx.o, rtxLib.a Common

OS Open Minimal Kernel rtxmin.o Common

OS Open Kernel Extensions for the minimal kernel rtxext.o Common

Timer Tick Support tickLib.a 403 EVB

Trivial File Transfer Protocol tftp.o Common

TTY Support Library ttyLib.a Common

XL C Compiler Support Library xlcLib.a XCOFF

Table 9-1. OS Open Libraries

Library File Name Platforms
Application Libraries and Tools 9-3

9.2 Using Libraries and Support Software

The object libraries specific to the 403 EVB are described below:

9.2.1 Serial Port Support Library

This library supports the native serial port on the 403GA, 403GC, and 403GCX processors. Use
in conjunction with the function provided by devLib.a and fsLib.a to provide a high level I/O
interface to application programs. The serial port support functions reside in the asyncLib.a
library.

9.2.2 Boot Library(RAM)

This library contains the OS Open bootstrap program for the appropriate platform. The boot
library performs initial processing to prepare the completed application program for
execution on the platform. For the 403 EVB, this processing includes moving the loaded
program such that real addresses correspond with addresses assumed by the language
development tools. The boot library for the 403 EVB also dynamically determines available
heap space and prepares the symbol table for use by OS Open symbol management
routines. The boot library does not export any functions.

9.2.3 Input/Output Support Library

The input/output functions reside in the ioLib.a library. To initialize the I/O subsystem, you
must call ioLib_init() (normal mode) or dbg_ioLib_init() (ROM Monitor debug/ethernet)
before performing any I/O other function.

Table 9-2. OS Open Libraries for the 403 EVB

Library File Name

Boot Library(RAM) bootlLib.a

Boot Library for OS Open in ROM bootrLib.a

Ethernet Device Driver Support Library enetLib.a

Extended Serial Communication Support Library esccLib.a

Input/Output Support Library ioLib.a

PowerPC Low Level Access Support Library ppcLib.a

ROM Monitor Ethernet Interface Library benetLib.a

Serial Support Library asyncLib.a

Software Timer Tick Support Library tickLib.a
9-4 403 EVB User’s Manual

9.2.4 PowerPC Low-Level Processor Access Support Library

The low-level access support library contains C-callable versions of the special PowerPC
instructions. A few of the sample programs use these functions to manipulate the
PPC403GA’s, PPC403GC’s and the PPC403GCX’s special registers. These functions
provide access to processor instructions not generated by compilers. For example, device
drivers often have a requirement to control data caching, disable interrupts, synchronize I/O,
and other processor and platform-specific operations. The low-level access support
functions reside in the ppcLib.a library. Since there are special registers that are not
implemented on all PowerPC processor types, not all the functions in ppcLib.a work for all
PowerPC processor types. In Chapter 10, "403 EVB Function Reference", within each
explanation for a function there is a list of processor types that the function is valid for.

9.2.5 ROM Boot Library

This library contains the OS Open bootstrap program and can be used instead of the boot library.
The ROM boot library should be used when OS Open is being burnt into a ROM. The boot
library performs initial processing to prepare the completed application program for
execution on the platform. The boot library for the 403 EVB also dynamically determines
available heap space and prepares the symbol table for use by OS Open symbol
management routines. The boot library does not export any functions.

9.2.6 Software Timer Tick Support Library

The OS Open system requires a periodic call to timertick_notify() to maintain internal
clocks and timer functions. The tickLib.a library contains an implementation of the
timertick_notify() function for PowerPC architecture machines. Timer tick support functions
reside in the tickLib.a library.
Application Libraries and Tools 9-5

9.3 Device Drivers Supplied with the 403 EVB

Device drivers provided with the 403 EVB include:

• Asynchronous
• Ethernet
• ROM Monitor Ethernet

Examples and references are provided where appropriate.

For more information about any of the OS Open functions mentioned in this chapter, refer to
the OS Open Programmer’s Reference.

9.3.1 Asynchronous Device Driver

The asynchronous device driver supports the S1 asynchronous communication port found
on the 403GA, 403GC and 403GCX processors. Following is a brief functional description of
the device driver:

• Support from 50 baud.
• Full duplex modem line control discipline.
• Overrun error, parity error, and framing error detection.
• BREAK interrupt detection.
• Support for data length of 7 and 8 bits.
• Support for 1 and 2 stop bits.
• Support for receive and transmit parity.
• Support for odd and even parity.
• Support for transmitting BREAK.
• Programmed I/O (PIO) operation.
• Interrupt driven input/output.
• Polled output functions.

Since only full duplex modem line control discipline is supported, connection between the
asynchronous port and another device must be made through a "NULL" modem. A NULL
modem is a device that crosses transmitted data and received data pins to enable
communication. The only time a NULL modem is not necessary is when connection is made
to a real modem device.

9.3.1.1 Device Driver Installation

The asynchronous device driver is installed by calling driver_install() . Following is an
example of asynchronous device driver installation:

#include <sys/asyncLib.h>
int devhandle;
rc=driver_install(&devhandle, async_init);

async_init() is declared in the file <sys/asyncLib.h> as follows:

int async_init(driver_t *dsw, va_list vargs)
9-6 403 EVB User’s Manual

Upon successful installation, driver_install() returns 0; otherwise –1 is returned. For more
information on driver_install() , refer to the OS Open Programmer’s Reference.

9.3.1.2 Device Installation

After the asynchronous device driver is installed, named devices can be created using
device_install() . Following is an example of device installation.

rc=device_install("/dev/s0", CHRTYPE, devhandle, 1, 128, 128,7372800, 2);

For device installation, devhandle is the value obtained from the driver_install() . Device
type CHRTYPE is defined in <sys/devDrivr.h> .

Additional parameters passed in the device_install() call are as follows:

Parameter Meaning

Fourth Parameter Port number to be installed (1)

Fifth Parameter Size of write buffer

Sixth Parameter Size of read buffer

Seventh Parameter Input clock for the divisor

Eighth Parameter Value for bits 30 and 31 of the IOCR register.

These are positional parameters.

Note: Write and read buffer sizes indicate number of characters that can be buffered in the
device driver.

Upon successful installation, device_install() returns 0; otherwise –1 is returned. When the
device is installed, error reporting for the device is turned off and xon/xoff pacing is enabled.
For more information on device_install() , refer to the OS Open Programmer’s Reference.
Application Libraries and Tools 9-7

9.3.1.3 Opening Asynchronous Communication Ports

After the device is installed, the open() system call can be used to open a particular device.
Following is an example of the open() system call used against the asynchronous port:

fd1=open("/dev/s0", O_RDWR, asyncParityNone, asyncParityOdd,
 asyncStopBits1, asyncDataBits8, 9600);

Additional parameters passed in open() are as follows:

Parameter Meaning

First Parameter Check/generate parity flag. Valid values are: asyncParityNone and
asyncParityGen_Check

Second Parameter Parity type. Valid values are asyncParityEven and asyncParityOdd.
Because parameters are positional, this parameter must be specified
even if parity is not used.

Third Parameter Number of stop bits. Valid values are asyncStopBits1 and
asyncStopBits2.

Fourth Parameter Data length. Valid values are asyncDataBits5, asyncDataBits6,
asyncDataBits7, and asyncDataBits8.

Fifth Parameter Baud rate. Valid values range from 50 baud.

These are positional parameters. All parameter constants can be found in <sys/ioctl.h> .

Note: The oflag parameter, O_RDWR in this example, which is passed in the open call, is
ignored by the device driver. When successful, open() returns a file descriptor, otherwise –1
is returned. open() can be called multiple times against the same asynchronous port.
Communication parameters passed during the last open() call are set in the asynchronous
port. For more information on open() , refer to the OS Open Programmer’s Reference.

9.3.1.4 Reading and Writing

After successfully installing and opening the asynchronous port, read() and write() calls can
be issued against that port. Multiple threads can issue read() and write() calls to the same
port at the same time. However, simultaneous read() calls issued to the same port may
block or be processed in an unexpected order. For these instances, thread scheduling and
synchronization must be handled by the application.

Following is an example of read() and write() calls:

rc=write(fd1,"\nOS Open Real-time Executive\n", 29);
rc=read(fd1, buffer, 10);
fd1 is the value obtained from the open() call.

Note: For more information on read() and write() , refer to the OS Open Programmer’s
Reference.
9-8 403 EVB User’s Manual

9.3.1.5 I/O Control

An ioctl() call issued against asynchronous device driver accepts the commands listed in
Table 9-3. All parameter constants can be found in <sys/ioctl.h>

Table 9-3. ioctl() Commands for Asynchronous Device Drivers

Command Parameters Explanation

ASYNCBAUDSET Value from 50 Sets baud rate

ASYNCBAUDGET Pointer to integer Returns baud rate

ASYNCBREAKSET None Starts sending BREAK on port

ASYNCBREAKCLR None Stops sending BREAK on port

ASYNCRERRORGET Pointer to integer Returns and clears read error condi-
tions. Values are defined in asyn-
cLib.h

ASYNCWERRORGET Pointer to integer Returns and clears write error condi-
tions. Values are defined in asyn-
cLib.h

ASYNCERROREN None Enables error reporting

ASYNCERRORDIS None Disables error reporting. All pending
errors are cleared

ASYNCERRORGET Pointer to integer Returns error reporting enabled flag

ASYNCDLENGET Pointer to integer Returns current data length

ASYNCDLENSET asyncDataBits7,
asyncDataBits8

Sets data length

ASYNCSTOPGET Pointer to integer Returns number of stop bits

ASYNCSTOPSET1 None Sets number of stop bits to 1

ASYNCSTOPSET1_5 None Sets number of stop bits to 1.5

ASYNCSTOPSET2 None Sets number of stop bits to 2

ASYNCPARITYNONE None Disable parity

ASYNCPARITYGEN None Enable parity

ASYNCPARITYSGET Pointer to integer Return parity status (enabled/dis-
abled)

ASYNCPARITYODD None Sets parity to odd

ASYNCPARITYEVEN None Sets parity to even

ASYNCPARITYGET Pointer to integer Returns parity type
Application Libraries and Tools 9-9

Following is an example of an ioctl() call issued against an asynchronous device:

rc=ioctl(fd1, ASYNCXONDISABLE);
if (rc !=0) printf(“ioctl failure\n”);
fd1 is the value obtained from the open() call.

9.3.1.6 Polled Asynchronous I/O

A function is provided for polled output to s1 serial port:

int s1dbprintf(unsigned long uart_clock, int iocr_reg, const char *format, ...)

The parameters passed are identical to printf() except for uart_clock and iocr_reg.
uart_clock specifies the clock speed and iocr_reg should be set to the SerClk pin as a clock
source(should be set to 0). Because polled I/O transmits characters synchronously, this
function may be called from first level interrupt handlers (FLIHs) or a user-supplied panic
function. Since the function waits until the characters are actually sent before returning, use
of this with long strings can significantly affect the timing of calling programs.

ASYNCXONENABLE None Enables XON/XOFF flow control

ASYNCXONDISABLE None Disables XON/XOFF flow control

ASYNCXONGET Pointer to integer Returns XON/XOFF flow control sta-
tus

ASYNCMODEMSTAT Pointer to integer Returns modem status

ASYNCFLUSHIN None Flushes input buffer

ASYNCFLUSHOUT None Flushes output buffer

ASYNCDRAIN None Blocks until all characters in output
buffer have been transmitted

ASYNCIGNBREAK None Ignores break interrupts

ASYNCSIGBREAK None Sends SIGINT on reception of break
condition

ASYNCERRBREAK None Returns error from read upon recep-
tion of break condition. 0x00 is
placed in the receive buffer at the
position where break occurred.

Table 9-3. ioctl() Commands for Asynchronous Device Drivers

Command Parameters Explanation
9-10 403 EVB User’s Manual

9.3.2 Extended Serial Communication Controller Device Driver

The ESCC device driver supports S2 asynchronous communication port found in the
standard I/O subsystem on the 403 EVB platform. Following is a brief functional description
of the device driver:

• Support from 50 baud.
• Full duplex modem line control discipline.
• Overrun error, parity error, and framing error detection.
• BREAK interrupt detection.
• Support for data length of 5, 6, 7, and 8 bits.
• Support for 1, 1.5 and 2 stop bits.
• Support for receive and transmit parity.
• Support for odd and even parity.
• Support for transmitting BREAK.
• Support for 16 bytes FIFO in the universal asynchronous receiver transmitter (UART).
• Programmed I/O (PIO) interrupt-driven slave communication.
• Interrupt driven input/output.
• Polled output functions.

Since only full duplex modem line control discipline is supported, connection between the
asynchronous port and another device must be made through a "NULL" modem. A NULL
modem is a device that crosses transmitted data and received data pins to enable
communication. The only time a NULL modem is not necessary is when connection is made
to a real modem device.

9.3.2.1 Device Driver Installation

The ESCC device driver is installed by calling driver_install() . Following is an example of
asynchronous device driver installation:

#include <esscLib.h>
int devhandle;
rc=driver_install(&devhandle, escc_init);

escc_init() is declared in the file <esccLib.h> as follows:
int escc_init(driver_t *dsw, va_list vargs)

Upon successful installation, driver_install() returns 0; otherwise –1 is returned. For more
information on driver_install() , refer to the OS Open Programmer’s Reference.

9.3.2.2 Device Installation

After the ESCC device driver is installed, named devices can be created using
device_install() . Following is an example of device installation.

rc =device_install(“/dev/s2”,CHRTYPE,devhandle,1,128,128);
Application Libraries and Tools 9-11

For device installation, devhandle is the value obtained from the driver_install() . Device
type CHRTYPE is defined in <sys/devDrivr.h> .

Additional parameters passed in the device_install() call are as follows:

Parameter Meaning

First Parameter Port number to be installed (1 or 2)

Second Parameter Size of write buffer

Third Parameter Size of read buffer

These are positional parameters.

Note: Write and read buffer sizes indicate number of characters that can be buffered in the
device driver.

Upon successful installation, device_install() returns 0; otherwise –1 is returned. When the
device is installed, error reporting for the device is turned off and xon/xoff pacing is enabled.
For more information on device_install() , refer to the OS Open Programmer’s Reference.

9.3.2.3 Opening ESCC Communication Port

After the device is installed, the open() system call can be used to open a particular device.
Following is an example of the open() system call used against the asynchronous port:

fd1=open("/dev/s2", O_RDWR, asyncParityNone, asyncParityOdd,
 asyncStopBits1, asyncDataBits8, 9600);

Additional parameters passed in open() are as follows:

Parameter Meaning

First Parameter Check/generate parity flag. Valid values are: asyncParityNone and
asyncParityGen_Check

Second Parameter Parity type. Valid values are asyncParityEven and asyncParityOdd.
Because parameters are positional, this parameter must be specified
even if parity is not used.

Third Parameter Number of stop bits. Valid values are asyncStopBits1,
asyncStopBits2, and asyncStopBits15. One and a half stop bits are
only valid for data length of 5.

Fourth Parameter Data length. Valid values are asyncDataBits5, asyncDataBits6,
asyncDataBits7, and asyncDataBits8.

Fifth Parameter Baud rate. Valid values range from 50 baud.

These are positional parameters. All parameter constants can be found in
<sys/ioctl.h> .
9-12 403 EVB User’s Manual

Note: The oflag parameter, O_RDWR in this example, which is passed in the open call, is
ignored by the device driver. When successful, open() returns a file descriptor, otherwise –1
is returned. open() can be called multiple times against the same asynchronous port.
Communication parameters passed during the last open() call are set in the asynchronous
port. For more information on open() , refer to the OS Open Programmer’s Reference.

9.3.2.4 Reading and Writing

After successfully installing and opening the asynchronous port, read() and write() calls can
be issued against that port. Multiple threads can issue read() and write() calls to the same
port at the same time. However, simultaneous read() calls issued to the same port may
block or be processed in an unexpected order. For these instances, thread scheduling and
synchronization must be handled by the application.

Following is an example of read() and write() calls:

rc=write(fd1,"\nOS Open Real-time Executive\n", 29);
rc=read(fd1, buffer, 10);

fd1 is the value obtained from the open() call.

For more information on read() and write() , refer to the OS Open Programmer’s Reference.

9.3.2.5 I/O Control

An ioctl() call issued against ESCC device driver accepts the commands listed in Table 9-4.
All parameter constants can be found in <sys/ioctl.h>.

Table 9-4. ioctl() Commands for the ESCC Device Driver

Command Parameters Explanation

ASYNCBAUDSET Value from 50 Sets baud rate

ASYNCBAUDGET Pointer to integer Returns baud rate

ASYNCTRIGSET asyncFifoTrigger1,
asyncFifoTrigger4,
asyncFifoTrigger8,
asyncFifoTrigger14

Sets FIFO trigger level for asynchro-
nous port

ASYNCTRIGGET Pointer to integer Returns current trigger level

ASYNCBREAKSET None Starts sending BREAK on port

ASYNCBREAKCLR None Stops sending BREAK on port

ASYNCSTICKGET Pointer to integer Returns the way the parity bit is inter-
preted by the port

ASYNCSTICKZERO None Disables stick parity
Application Libraries and Tools 9-13

ASYNCSTICKONE None Parity interpretation tracks even/odd
parity

ASYNCRERRORGET Pointer to integer Returns and clears read error condi-
tions. Values are defined in asyn-
cLib.h

ASYNCWERRORGET Pointer to integer Returns and clears write error condi-
tions. Values are defined in asyn-
cLib.h

ASYNCERROREN None Enables error reporting

ASYNCERRORDIS None Disables error reporting. All pending
errors are cleared

ASYNCERRORGET Pointer to integer Returns error reporting enabled flag

ASYNCDLENGET Pointer to integer Returns current data length

ASYNCDLENSET asyncDataBits5,
asyncDataBits6,
asyncDataBits7,
asyncDataBits8

Sets data length

ASYNCSTOPGET Pointer to integer Returns number of stop bits

ASYNCSTOPSET1 None Sets number of stop bits to 1

ASYNCSTOPSET1_5 None Sets number of stop bits to 1.5

ASYNCSTOPSET2 None Sets number of stop bits to 2

ASYNCPARITYNONE None Disable parity

ASYNCPARITYGEN None Enable parity

ASYNCPARITYSGET Pointer to integer Return parity status (enabled/dis-
abled)

ASYNCPARITYODD None Sets parity to odd

ASYNCPARITYEVEN None Sets parity to even

ASYNCPARITYGET Pointer to integer Returns parity type

ASYNCXONENABLE None Enables XON/XOFF flow control

ASYNCXONDISABLE None Disables XON/XOFF flow control

ASYNCXONGET Pointer to integer Returns XON/XOFF flow control sta-
tus

ASYNCMODEMSTAT Pointer to integer Returns modem status

ASYNCFLUSHIN None Flushes input buffer

Table 9-4. ioctl() Commands for the ESCC Device Driver

Command Parameters Explanation
9-14 403 EVB User’s Manual

Following is an example of an ioctl() call issued against an asynchronous device:

rc=ioctl(fd1, ASYNCXONDISABLE);
if (rc !=0) printf(“ioctl failure\n”);

fd1 is the value obtained from the open() call.

9.3.2.6 Polled Asynchronous I/O

A function is provided for polled output to s2 serial port:

int s2dbprintf(const char *format, ...)

Parameters passed to this function are identical to those passed to printf() . Because polled
I/O transmits characters synchronously, this function may be called from first level interrupt
handlers (FLIHs) or a user-supplied panic function. Since this function waits until the
characters are actually sent before returning, using this with long strings can significantly
affect the timing of calling programs.

ASYNCFLUSHOUT None Flushes output buffer

ASYNCDRAIN None Blocks until all characters in output
buffer have been transmitted

ASYNCIGNBREAK None Ignores break interrupts

ASYNCSIGBREAK None Sends SIGINT on reception of break
condition

ASYNCERRBREAK None Returns error from read upon recep-
tion of break condition. 0x00 is
placed in the receive buffer at the
position where break occurred.

Table 9-4. ioctl() Commands for the ESCC Device Driver

Command Parameters Explanation
Application Libraries and Tools 9-15

9.3.3 Ethernet Device Driver

The Ethernet device driver is a character device driver supporting packet level read/writes to
the integrated Ethernet controller. The driver features the ability to open multiple files. Each
file receives packets for a specific standard Ethernet or 802.3 address.

Function highlights are:

• Up to 8 receive channels
• Size of receive buffer pool determined by user at driver install time.

enet_native_attach() attaches the TCP/IP protocol to the Ethernet device. Once the TCP/IP
stack is attached, Ethernet packets can be sent/received using the TCP/IP functions or by
using the Ethernet functions provided, such as enet_send_packet() .

The Ethernet device is attached to the TCP/IP protocol stack after tcpip_init() and net_init()
have been performed. The following is an example of attaching the TCP/IP protocol stack to
the Ethernet.

#include <enetLib.h>
#define ENETHOST “403_board”
#define ENET_CONFIG “ ent0 403_board netmask 255.255.240.0 up”
#define SRAM_SIZE 8192 /* 8K buffer */
int do_enet()
{

int rc;
unsigned long processor_clock_speed;
processor_clock_speed = processor_speed();
rc = tcpip_init(ENETHOST, 1, 1000); /* Initialize the TCP/IP library */
if(rc != 0)

return -1;
rc = net_init(); /*initialize netLib */
if(rc != 0)

return -1;
/* attatch the TCP/IP protocol stack */

rc = oakenet_attach(processor_clock_speed);
if(rc != 0)

return -1;
rc = ifconfig(ENET_CONFIG); /* configure network interface */
if(rc != 0)

return -1;
return 0;

}

9-16 403 EVB User’s Manual

9.3.4 ROM Monitor Ethernet Device Driver

The ROM Monitor Ethernet device driver provides network access to the applications
running on the 403 EVB, while still allowing the ROM Monitor to access the RISCWatch
debugger over the ethernet.

This device driver uses code resident in the ROM monitor to send and receive ethernet
packets. A different IP address must be specified to distinguish the packets from ROM
Monitor and OS Open. I/O initialization should be done by calling dbg_ioLib_init() rather
than ioLib_init() .

9.3.4.1 ROM Monitor Ethernet Installation and Initialization

The ROM Monitor Ethernet device driver is installed by calling biosenet_attach() . Following
is a prototype of this function:

#include <benetLib.h>
int biosenet_attach(unsigned long ipaddr, int init_flag);

Upon successful installation, biosenet_attach() returns 0; otherwise -1 is returned. The IP
address for OS Open is specified in the ipaddr parameter. The init_flag specifies whether
the Ethernet controller needs to be initialized. If init_flag is set to 0 then the Ethernet
controller is not initialized. If init_flag is set to a non-0 value, initialization of the Ethernet
controller is performed.
Application Libraries and Tools 9-17

9.4 Utilities

as-emb
This XCOFF assembler is a functional superset of the as assembler supplied
with AIX for the RS6000 platform only. The XCOFF assembler has been
extended with additional machine types and extended mnemonics in support of
the PowerPC embedded microcontrollers.

For basic assembler information such as source file requirements, syntax,
pseudo ops, etc. consult the AIX Assembler Language Reference SC23-2197.
It may also be helpful to have the User’s Manual for the embedded controller
being used, such as the User’s Manual.

Extensions to .machine

The .machine pseudo operation has been extended to identify members of the
IBM PowerPC embedded controller family. Values that may be used include:

• 403GA - Using this mode specifies PowerPC instructions plus those
instructions unique to the 403GA, 403GC and 403GCX.

• PPC-EMB - This mode will permit any instruction valid for the PowerPC
Embedded Controller family to be assembled.

Note: This assembler assumes the user is aware of what PowerPC features
are not available on a specific processor. For example, the mftb extended
mnemonic (move from time base) will assemble without assembler error for
.machine “403GA”, but will not execute correctly, as the 403GA does not have
a PowerPC timebase.

Additional instructions and extended mnemonics

When one of the previous .machine options is specified, the following
instructions and mnemonics are available. Consult the controller User’s
Manual for details concerning the operation of these instructions.

New instructions

dccci ra,rb Data cache congruence class invalidate

dcread rt,ra,rb Data cache read

icbt ra,rb Instruction cache block touch

iccci ra,rb Instruction cache congruence class invalidate

icread ra,rb Instruction cache read

mfdcr rt,dcr Move from Device Control Register

mtdcr dcr,rs Move to Device Control Register

rfci Return from critical interrupt

wrtee rs Write External Enable

wrteei ei Write External Enable Immediate
9-18 403 EVB User’s Manual

Instructions for PowerPC registers

mtsprg0 rs Move to Special General Purpose Register 0

mtsprg1 rs Move to Special General Purpose Register 1

mtsprg2 rs Move to Special General Purpose Register 2

mtsprg3 rs Move to Special General Purpose Register 3

mfsprg0 rt Move from Special General Purpose Register 0

mfsprg1 rt Move from Special General Purpose Register 1

mfsprg2 rt Move from Special General Purpose Register 2

mfsprg3 rt Move from Special General Purpose Register 3

Extended Mnemonics for mfspr

mfcdbcr rs Move from Cache Debug Control Register
(PPC403GC and PPC403GCX only)

mfdac1 rt Move from Data Address Compare 1

mfdac2 rt Move from Data Address Compare 2

mfdbcr rt Move from Debug Control Register

mfdbsr rt Move from Debug Status Register

mfdccr rt Move from Data Cache Cachability Register

mfdcwr rt Move from Data Cache Write-thru Register
(PPC403GC and PPC403GCX only)

mfdear rt Move from Date Exception Address Register

mfesr rt Move from Exception Syndrome Register

mfevpr rt Move from Exception Vector Prefix Register

mfiac1 rt Move from Instruction Address Compare 1

mfiac2 rt Move from Instruction Address Compare 2

mficcr rt Move from Instruction Cache Cachability Register

mticdbdr rt Move from Instruction Cache Debug Data Register
(PPC403GC and PPC403GCX only)

mfpbl1 rt Move from Protection Bound Lower 1

mfpbl2 rt Move from Protection Bound Lower 2

mfpbu1 rt Move from Protection Bound Upper 1

mfpbu2 rt Move from Protection Bound Upper 2
Application Libraries and Tools 9-19

mfpid rt Move from Process ID Register (PPC403GC only)

mfpit rt Move from Programmable Interval Timer

mfpvr rt Move from Processor Version register

mfsgr rt Move from Storage Guard Register (PPC403GC
only)

mfsmr rt Move from Srorage Memory-coherent Register
(PPC403GC and PPC403CX only)

mfsrr2 rt Move from Save/Restore Register 2

mfsrr3 rt Move from Save/Restore Register 3

mftbhi rt Move from 403 time base high

mftblo rt Move from 403 time base low

mftcr rt Move from Timer Control Register

mftsr rt Move from TImer Status Register

mfzpr rt Move from Zone Protect Register (PPC403GC and
PPC403CX only)

Extended Mnemonics for mtspr

mtcdbcr rs Move to Cache Debug Control Register (PPC403GC
only)

mtdac1 rs Move to Data Address Compare 1

mtdac2 rs Move to Data Address Compare 2

mtdbcr rs Move to Debug Control Register

mtdbsr rs Move to Debug Status Register

mtdccr rs Move to Data Cache Cachability Register

mtdear rs Move to Date Exception Address Register

mtdcwr rs Move to Data Cache Write-thru Register
(PPC403GC and PPC403CX only)

mtesr rs Move to Exception Syndrome Register

mtevpr rs Move to Exception Vector Prefix Register

mtiac1 rs Move to Instruction Address Compare 1

mtiac2 rs Move to Instruction Address Compare 2

mticcr rs Move to Instruction Cache Cachability Register
9-20 403 EVB User’s Manual

mticdbdr rs Move to Instruction Cache Debug Data Register
(PPC403GC and PPC403CX only)

mtpbl1 rs Move to Protection Bound Lower 1

mtpbl2 rs Move to Protection Bound Lower 2

mtpbu1 rs Move to Protection Bound Upper 1

mtpbu2 rs Move to Protection Bound Upper 2

mtpid rs Move to Process ID Register (PPC403GC and
PPC403CX only)

mtpit rs Move to Programmable Interval Timer

mtsgr rs Move to Storage Guard Register (PPC403GC and
PPC403CX only)

mtsmr rs Move to Srorage Memory-coherent Register
(PPC403GC and PPC403CX only)

mtsrr2 rs Move to Save/Restore Register 2

mtsrr3 rs Move to Save/Restore Register 3

mttbhi rs Move to 403 time base high

mttblo rs Move to 403 time base low

mttcr rs Move to Timer Control Register

mttsr rs Move to TImer Status Register

mtzpr rs Move to Zone Protect Register (PPC403GC and
PPC403CX only)

Extended Mnemonics for mfdcr

mfdear rt Move from Bus Error Address Register

mfbesr rt Move from Bus Error Syndrome Register

mfbr0 rt Move from Bank Register 0

mfbr1 rt Move from Bank Register 1

mfbr2 rt Move from Bank Register 2

mfbr3 rt Move from Bank Register 3

mfbr4 rt Move from Bank Register 4

mfbr5 rt Move from Bank Register 5

mfbr6 rt Move from Bank Register 6

mfbr7 rt Move from Bank Register 7
Application Libraries and Tools 9-21

mfdmacc0 rt Move from DMA Chained Count Register 0

mfdmacc1 rt Move from DMA Chained Count Register 1

mfdmacc2 rt Move from DMA Chained Count Register 2

mfdmacc3 rt Move from DMA Chained Count Register 3

mfdmacr0 rt Move from DMA Channel Control Register 0

mfdmacr1 rt Move from DMA Channel Control Register 1

mfdmacr2 rt Move from DMA Channel Control Register 2

mfdmacr3 rt Move from DMA Channel Control Register 3

mfdmact0 rt Move from DMA Count Register 0

mfdmact1 rt Move from DMA Count Register 1

mfdmact2 rt Move from DMA Count Register 2

mfdmact3 rt Move from DMA Count Register 3

mfdmada0 rt Move from DMA Destination Address Register 0

mfdmada1 rt Move from DMA Destination Address Register 1

mfdmada2 rt Move from DMA Destination Address Register 2

mfdmada3 rt Move from DMA Destination Address Register 3

mfdamasa0 rt Move from DMA Source Address Register 0

mfdamasa1 rt Move from DMA Source Address Register 1

mfdamasa2 rt Move from DMA Source Address Register 2

mfdamasa3 rt Move from DMA Source Address Register 3

mfdmasr rt Move from DMA Status Register

mfexier rt Move from External Interrupt Enable Register

mfexisr rt Move from External Interrupt Status Register

mfiocr rt Move from IO Control Register

Extended Mnemonics for mtdcr

mtdear rs Move to Bus Error Address Register

mtbesr rs Move to Bus Error Syndrome Register

mtbr0 rs Move to Bank Register 0

mtbr1 rs Move to Bank Register 1

mtbr2 rs Move to Bank Register 2
9-22 403 EVB User’s Manual

mtbr3 rs Move to Bank Register 3

mtbr4 rs Move to Bank Register 4

mtbr5 rs Move to Bank Register 5

mtbr6 rs Move to Bank Register 6

mtbr7 rs Move to Bank Register 7

mtdmacc0 rs Move to DMA Chained Count Register 0

mtdmacc1 rs Move to DMA Chained Count Register 1

mtdmacc2 rs Move to DMA Chained Count Register 2

mtdmacc3 rs Move to DMA Chained Count Register 3

mtdmacr0 rs Move to DMA Channel Control Register 0

mtdmacr1 rs Move to DMA Channel Control Register 1

mtdmacr2 rs Move to DMA Channel Control Register 2

mtdmacr3 rs Move to DMA Channel Control Register 3

mtdmact0 rs Move to DMA Count Register 0

mtdmact1 rs Move to DMA Count Register 1

mtdmact2 rs Move to DMA Count Register 2

mtdmact3 rs Move to DMA Count Register 3

mtdmada0 rs Move to DMA Destination Address Register 0

mtdmada1 rs Move to DMA Destination Address Register 1

mtdmada2 rs Move to DMA Destination Address Register 2

mtdmada3 rs Move to DMA Destination Address Register 3

mtdamasa0 rs Move to DMA Source Address Register 0

mtdamasa1 rs Move to DMA Source Address Register 1

mtdamasa2 rs Move to DMA Source Address Register 2

mtdamasa3 rs Move to DMA Source Address Register 3

mtdmasr rs Move to DMA Status Register

mtexier rs Move to External Interrupt Enable Register

mtexisr rs Move to External Interrupt Status Register

mtiocr rs Move to IO Control Register
Application Libraries and Tools 9-23

Extended Mnemonics for tlbwe

tlbwe rs, rs, ws Write to TLB, ws = 0 for HI, ws = 1 for LO, for entry ra
(PPC403GC and PPC403CX only)

tlbwehi rs, ra Write to TLBHI for entry ra (PPC403GC and
PPC403CX only)

tlbwelo rs, ra Write to TLBLO for entry ra (PPC403GC and
PPC403CX only)

Extended Mnemonics for tlbre

tlbwe rt, rs, ws Read from TLB, ws = 0 for HI, ws = 1 for LO, for entry
ra (PPC403GC and PPC403CX only)

tlbrehi rt, ra Read from TLBHI for entry ra (PPC403GC and
PPC403CX only)

tlbrelo rt, ra Read from TLBLO for entry ra (PPC403GC and
PPC403CX only)

Extended Mnemonics for tlbsx

tlbsx rt, ra, rb Search the TLB for translation(PPC403GC and
PPC403CX only)

9.5 Environment Bringup and Initialization

The following section describes the processing that occurs when the evaluation board
environment is initialized.

Upon power-up or reset the ROM Monitor initializes the processor and other peripherals on
the board. If a ROM Monitor load is attempted (via option 0), all enabled power-on tests are
executed and, following their completion, a bootp request is sent to the host. This request
involves an exchange of UDP packets corresponding to the bootp protocol. In essence, the
ROM Monitor asks for and is supplied with the name of the boot image file on the host
workstation. tftp (Trivial File Transfer Protocol) is then initiated by the ROM Monitor to
transfer the boot image to the evaluation board.

Once the file has been transferred, two simple checks are made. A “magic number” in the
boot image’s 32-byte header verifies that the image is one that can be loaded by the ROM
Monitor (ie., a file created by the eimgbld or nimgbld tool - see appendix C for details of the
load format). After the load is complete, control is transferred to the specified entry point in
the boot image, which is in the bootstrap program.

When using RISCWatch’s load image command to load a boot image file, the debugger
strips off the file’s 32-byte header and loads the remaining bytes of the file onto the board.
The start address of the load is designated in bytes 4-8 of the header. Once loaded, the IAR
register is set to the boot image’s entry point as defined in bytes 16-19 of the header. This
entry point is in the bootstrap code. See the “Running Your Programs” section in the
RISCWatch User’s Guide for additional information on loading files.
9-24 403 EVB User’s Manual

9.5.1 Board bootstrap

The source for OS Open’s bootstrap code is included in the samples\bootLib directory.
The bootstrap program performs the following functions:

 1. Unpacks the boot image format, placing the .text and .data sections in the addresses
specified at link time.

 2. Modifies the kernel configuration block with new heap size and start address.

 3. Sets the .bss section to zeros, in accordance with ANSI C requirements.

9.5.2 Environment Initialization

OS Open requires information about the system environment at initialization. The following
source files, which are included with the samples, are used to supply that information and to
establish the working environment:

• basic_os.c - contains pieces of config.c, io_init.c, panic.c, thread0.c, and utils.c to pro-
vide a minimal OS Open configuration.

• config.c - configures the OS Open kernel
• io_init.c - initializes OS Open’s I/O subsystem
• network.c - configures the host names and addresses for your environment
• panic.c - provides a sample panic function
• thread0.c - configures various features of OS Open (networking, remote debugger, etc.)
• utils.c - provides some useful utilities such as dir() to produce a directory listing

Additional information can be found in the “Configuring the OS Open Operating System” and
“Developing OS Open Applications” chapters in the OS Open User’s Guide.

9.6 Tools

Several host tools are provided to assist you in using the EVB support package or creating
your own applications for the PowerPC 403. The tools can also be used for ROM program
development.

9.6.1 elf2rom and xcofrom

elf2rom takes an ELF format executable file (output from the linker/binder), extracts the text
and data sections, and writes them to a binary file for use as input to a ROM programmer.
This tool can be used by those who wish to modify the ROM Monitor source code and create
a new flash memory binary file for use with a ROM programmer or the flash update utility
included with EVB software.

xcofrom works similarly on XCOFF file format input files.
Application Libraries and Tools 9-25

Syntax:

elf2rom [-v] [-d] [-p] [-s size] [-i offset] [-o output_file] input_elf

xcofrom [-v] [-d] [-p] [-s size] [-i offset] [-o output_file] input_xcoff

Description:

The program takes the input file input_elf, for elf2rom (which is assumed to be an ELF file
output from the linker) and input_xcoff for xcofrom (which is assumed to be an XCOFF file
output from the linker), extracts the text and data sections, and writes them to the file,
output_file. There are several optional flags that can affect elf2rom and xcofrom processing.
They are described below:

-v The verbose flag causes information about the generated output file to
be written to stderr at the completion of the utility. This information
includes the sizes and origins of the various sections and entry point.

-d The debug flag will cause the symbol information from the input ELF
file to be included after the data section in the output binary file.

-p The promotion flag causes the data section to be aligned on a full
word boundary if possible. This alignment facilitates full word moves of
data to the appropriate target address without causing alignment
exceptions.

-s The size flag causes the output binary file to be padded to a particular
size. This option is useful if it is necessary to create binary files that
are the same size as a target ROM device. Error messages are
generated if the generated image exceeds the specified size.

-i offset The info flag places an information block into the output binary file at
the specified offset. Since this info block overlays what is currently in
the file at the specified offset, space should be reserved for its
placement. The info block contains the following fields:

struct info_block {
long block_id; /* Magic Number 0xBFAB0030 */
long entry_point; /* entry point of image */
long toc_ptr; /* used for XCOFF; not used for ELF*/
long text_size; /* size of text section in bytes

also offset from beginning of image to data section */
long text_p_addr; /* text origin address as generated in ELF module */
long data_size; /* size of data section */
long data_p_addr; /* data origin as specified in generated ELF module */
long bss_size; /* size of bss section */
long bss_p_addr; /* bss origin as specified in generated ELF module */
long num_syms; /* number of symbols from symbol section (only

valid if debug flag is set) */
long sym_p_addr; /* address of symbol table. Calculated as text
9-26 403 EVB User’s Manual

origin + offset of symbols with created ROM image */
long text_offset; /* offset of text section from beginning of original

ELF file. This information is required by
certain debuggers */

};

-o output_file Allows the specification of an output file name. The default name is
input_elf.img.

input_elf This is simply the ELF binary input file. (elf2rom only)

input_xcoff This is simply the XCOFF binary input file. (xcofrom only)

The following picture shows the relationship of the various sections in the produced output
file. The figure assumes that the info block flag [-i] was specified with an offset of 0x00.

Users can find an example of using elf2rom in the ROM Monitor’s Makefile under
osopen/PLATFORM/openbios .

Info Block

Text section

Data Section

Symbol Section
(if debug flag specified)

Padding to bring

 (if size specified)

Text Size

Data Size

(overlays part of text)

image to size

Figure 9-1. elf2rom and xcofrom Output File

End of
File

Start of
File
Application Libraries and Tools 9-27

9.6.2 hbranch

hbranch places a branch at the end of a ROM image. This simplifies production of ROM
images for the PowerPC 403, which executes the instruction at the top location of memory
following power-up or reset. hbranch can also be used to store a communication device’s
network address in the ROM’s Vital Product Data (VPD) area.

Syntax:

hbranch [-v] [-s size] [-n net_addr] input_image

Description:

The program takes the input file input_image (which must be the output of elf2rom, xcofrom,
nimgbld, or eimgbld with an information block at 0x0 relative) pads it to size size and writes
a relative branch to the entry point recorded in the end of the image. The entry point must be
a label, not a function descriptor. There are several optional flags that can affect hbranch
processing. They are described below:

-v The verbose flag causes information about the generated output
image to be written to stderr at the completion of the utility. This
information includes entry point information.

-s size The size flag causes the image to be padded to a particular size. This
facility is useful if it is necessary to create binary images that are the
same size as a target ROM device.

-n net_addr The network address flag stores net_addr, a 12 hex character network
address (the media access control (MAC) address), in the VPD area in
ROM. The ROM Monitor uses this option to store the EVB’s ethernet
controller’s network address in its VPD.

-p patch_file The patch file flag causes the file patch_file to be placed into the
image just before the final branch and logically inserted into the
instruction stream between the branch at the end of the file and the
entry point. The patch file is inserted into the image “as is” and will
usually contain the binary representation of position independent
executable instructions. See Figure 9-2 for the details as to how
normal hbranch processing is changed by a patch file.

input_image This is simply the source image file. The output is written to stdout..
9-28 403 EVB User’s Manual

Figure 9-3 shows the relationship of the various sections in the produced output image.

Users can find an example of using hbranch in the ROM Monitor’s Makefile under
osopen/PLATFORM/openbios .

Figure 9-2. Detail of patch file placement

Branch to
entry point

Branch to start
of patch file

Patch file consisting of executable instructions

End of
File

Padding to bring

 (if size is specified)

branch to ep

Binary image

elf2rom

Entry point

image to size

produced by

Figure 9-3. hbranch Output Image

VPD (at end - 512)

Start of File

End of
File
Application Libraries and Tools 9-29

9.6.3 eimgbld

The eimgbld tool converts an output file from the linker/binder into the format used by the
ROM Monitor to load programs from the host onto the evaluation board. The ELF file must
be an otherwise executable file, with the text and data addresses bound at link time. Since
the entry point of the ELF file will be used by the ROM loader, it must point to a suitable
bootstrap.

Syntax:

eimgbld: [-D -P -S -v -b addr -m m_file -o o_file -s s_file -x x_file] input_elf

Description:

The program takes the input file input_elf (which must be the final ELF executable file
produced from the build process) and converts it into the load format used by the ROM
Monitor. There are several optional flags that can affect eimbgld processing. They are
described below:

-D Set debug flag. A flag is set in the image causing the ROM Monitor
debugger to be invoked immediately after the image is loaded.

-P Creates output image in PReP format. PReP format is used by some
PowerPC platforms.

-S Suppress symbol information. Specifying this flag will prevent the
symbol table from being included in the image.

-v Verbose option. Directs information about the produced image to
stderr.

-b addr Set the symbol start location to address, addr.

-m m_file Specify the ROM address map file. The format of this file is two
addresses on each line (start address and ending address separated
by a “,”).

-o o_file Allows the specification of an output file name. The default name is
input_elf.img.

--s s_file Restrict symbol table to names in specified file, s_name. The format of
this file is one symbol on each line.

-x x_file Suppress section names listed in specified file, x_name. The format of
this file is one section name on each line.

Users can find an example of using eimgbld in the sample Makefile under
osopen/PLATFORM/samples .
9-30 403 EVB User’s Manual

9.6.4 nimgbld (XCOFF kits only)

The input file to nimgbld must be an XCOFF file with space reserved after the entry point for
the load information block (see Appendix B for more details). RS6000 users can find an
example of using eimgbld in the Makefile under /usr/osopen/PLATFORM/samples. .

The nimgbld tool converts an output file from the linker/binder into the format used by the
ROM Monitor to load programs from the host onto the evaluation board. The XCOFF file
must be an otherwise executable file, with the text and data addresses bound at link time.
Since the entry point of the XCOFF file will be used by the ROM loader, it must point to a
suitable bootstrap.

Syntax:

nimgbld: [-D -P -S -v -o o_file -s s_file -x x_file] input_xcoff

Description:

The program takes the input file input_xcoff (which must be the final XCOFF executable file
produced from the build process) and converts it into the load format used by the ROM
Monitor. There are several optional flags that can affect nimbgld processing. They are
described below:

-v Verbose option.

-D Set debug flag. A flag is set in the image causing the ROM Monitor
debugger to be invoked immediately after the image is loaded.

-P Creates output image in PReP format. PReP format is used by some
PowerPC platforms.

-S Suppress symbol information. Specifying this flag will prevent the
symbol table from being included in the image.

-o o_file Allows the specification of an output file name. The default name is
input_elf.img.

--s s_file Restrict symbol table to names in specified file, s_name. The format of
this file is one symbol on each line.

The input file must be an XCOFF file with space reserved after the entry point for the load
information block (see Appendix B for more details).
Application Libraries and Tools 9-31

9-32 403 EVB User’s Manual

10

10
403 EVB Function Reference

This chapter describes the OS Open functions for the 403 EVB platform.
The function calls and macros are arranged alphabetically by name. For
information about the effective use of some of these functions, refer to the
PPC403GA or PPC403GC or PPC403GCX Embedded Controller User’s
Manual.

All descriptions contain the following sections:

• Synopsis
• Library
• Description
• Errors
• Attributes
• Processors

Examples and references are provided or referenced where appropriate.

10.1 Attributes and Threads
Functions and macros have attributes that affect thread execution.
Depending on their behavior, functions may or may not be “async safe,”
“cancel safe,” and “interrupt handler safe.”

10.1.1 Async Safe Functions

An async safe function may be entered by two or more concurrently
executing threads, with each thread getting the correct results.

Functions that operate only on disjoint or local data objects are reentrant,
and are therefore async safe. For example, ppcCntlzw() operates only on
its arguments, making it reentrant and therefore async safe.

Functions that operate on common or global data objects may use
serialization techniques, such as mutexes and semaphores, within the
functions to ensure async safe operation. enet_send_packet() uses the
functions semwait() and sempost() to force serialization. Refer to the OS
Open User’s Guide for more information about the use of mutexes and
semaphores.
403 EVB Function Reference 10-1

10.1.2 Cancel Safe Functions

The cancel safe attribute is important only to threads executing in deferred
cancelability mode (the cancel state is enabled; the cancel type is
deferred).

A thread executing in deferred cancelability mode can execute a cancel
safe function without being canceled. If the same thread executes a non-
cancel safe function, the thread may or may not be canceled during
execution of the function.

10.1.3 Interrupt Handler Safe Functions

An interrupt handler safe function may be called by a first level interrupt
handler (FLIH).

10.1.4 Callable from Application Thread Group Fun ctions

This attribute is only a concern when running OS Open with Virtual
Memory. A function that is callable from an application thread group may
be called from all thread groups. A function not callable from an application
thread group will cause an exception if called from any thread group other
than the kernel thread group.

10.1.5 Processors

The list of processors shows the PowerPC processor the function or macro
is valid for.

10.2 403 EVB Functions
Descriptions of the functions provided specifically to support the 403 EVB
are listed in Table 10-1:

Table 10-1. Functions Specific to 403 EVB

Function or Macro Description Page

async_init() Installs the asynchronous device driver 10-13

biosenet_attach() Attaches the Ethernet to an IP address 10-14

clock_set() Sets the OS Open POSIX clock to the
value obtained from the host clock

10-16

dbg_ioLib_init() Initializes the I/O library 10-17
10-2 403 EVB User’s Manual

dcache_flush() Flushes cache lines, beginning at the
effective address and continuing for a
specified number of bytes

10-18

dcache_invalidate() Invalidates cache lines beginning at the
effective address and continuing for a
specified number of bytes

10-19

dma_disable() Inhibits DMA activity on a channel 10-20

dma_setup() Initializes the DMA channel registers for
subsequent DMA slave transfers

10-21

dma_status() Returns the DMA status for the channel
specified by channel

10-23

enet_disable_ipinput Disables the forwarding of Ethernet pack-
ets to the TCP/IP protocol stack.

10-25

enet_enable_ipinput Enables the forwarding of Ethernet packets
to the TCP/IP protocol stack.

10-26

enet_native_attach .Attaches TCP/IP protocol stack. 10-27

enet_recv_packet() Returns a pointer to the mbuf chain holding
the packet received by the Ethernet device
driver.

10-29

enet_send_packet() Transmits packet over the Ethernet. 10-30

escc_init() Device driver for S2 communication 10-31

ext_int_config() Comfigures interrupt type 10-32

ext_int_disable() Disables the interrupt level specified by an
event

10-33

ext_int_enable() Enables the interrupt level specified by an
event

10-34

Table 10-1. Functions Specific to 403 EVB

Function or Macro Description Page
403 EVB Function Reference 10-3

ext_int_install() Installs a first level interrupt handler (FLIH)
for an event.

10-35

ext_int_query() Returns information about the FLIH 10-37

fpemul_init() Installs floating point interrupt handler. 10-38

ioLib_init() Initializes I/O library 10-39

oakenet_attach() Attaches TCP/IP protocol stack to the
Ethernet device.

10-27

ppcAbend() Executes an invalid opcode forcing a pro-
gram check interrupt

10-41

ppcAndMsr() ANDs a value with the contents of the MSR 10-42

ppcCntlzw() Counts consecutive leading zeros in a
value

10-43

ppcDcbf() Copies the cache block back to main stor-
age (if the block resides in cache and has
been modified with respect to main stor-
age) and then invalidates the cache block

10-44

ppcDcbi() Invalidates a cache block, discarding any
modified contents if the block is valid in
cache

10-45

ppcDcbst() Copies a cache block, discarding any mod-
ified contents if the block is valid in cache

10-46

ppcDcbz() Sets a cache block to 0 10-47

ppcDflush() Writes 0’s into the data cache and then
turns data cache off by writing 0’s into the
data cache cacheability register (DCCR)

10-49

Table 10-1. Functions Specific to 403 EVB

Function or Macro Description Page
10-4 403 EVB User’s Manual

ppcEieio() Ensures that all storage references before
the call finish before any storage refer-
ences after the call start

10-50

ppcHalt() Is a one instruction spin loop, effectively
putting the processor in an enabled wait at
the point of invocation

10-51

ppcIcbi() Invalidates an instruction cache block 10-52

ppcIsync() Causes the processor to discard any
instructions that may have been prefetched

10-53

ppdMfbear() Returns the current value of the bus error
address register (BEAR)

10-54

ppcMfbesr() Returns the current value of the bus error
syndrome register (BESR)

10-55

ppcMfbr0() - ppcMfbr7() Return the value of their respective bank
registers (BR0 - BR7)

10-56

ppcMfbrh0() - ppcMfbrh7() Return the value of their BRH registers
(BRH0 - BRH7) (403GCX only)

10-58

ppcMfcdbcr() Returns the value of the Cache Debug
Control Register (CDBCR)

10-59

ppcMfdac1() -
ppcMfdac2()

Returns the values of the processor debug
address compare registers (DAC1 - DAC2)

10-60

ppcMfdbcr() Returns the value of the processor debug
control register (DBCR)

10-61

ppcMfdbsr() Returns the value of the processor debug
status register (DBSR)

10-62

ppcMfdccr() Returns the value of the Data Cache
Cacheability Register (DCCR)

10-63

Table 10-1. Functions Specific to 403 EVB

Function or Macro Description Page
403 EVB Function Reference 10-5

ppcMfdcwr() Returns the value of the Data Cache Write-
thru Register (DCWR)

10-64

ppcMfdear() Returns the value of the Data Exception
Address Register (DEAR)

10-65

ppcMfdmacc0() -
ppcMfdmacc3()

Returns the value of the DMA chained
count register (DMACC0 - DMACC3)

10-66

ppcMfdmacr0() -
ppcMfdmacr3()

Returns the value of the DMA channel con-
trol register (DMACR0 - DMACR3)

10-68

ppcMfdmact0() -
ppcMfdmact3()

Return the value of the DMA count regis-
ters (DMACT0 - DMACT3)

10-69

ppcMfdmada0() -
ppcMfdmada3()

Return the value of the DMA destination
address registers (DMADA0 - DMADA3)

10-70

ppcMfdmasa0() -
ppcMfdmasa3()

Return the value of the DMA
source/chained address registers
(DMASA0 - DMASA3)

10-71

ppcMfdmasr() Returns the value of the DMA status regis-
ter (DMASR)

10-72

ppcMfesr() Returns the value of the exception syn-
drom register (ESR)

10-73

ppcMfevpr() Returns the value of the exception vector
prefix register (EVPR)

10-74

ppcMfexier() Returns the value of the external interrupt
enable register (EXIER)

10-75

ppcMfexisr() Returns the value of the external interrupt
status register (EXISR)

10-76

ppcMfgpr1() Returns the current value of GPR(1) 10-77

ppcMfgpr2() Returns the current value of GPR(2) 10-78

Table 10-1. Functions Specific to 403 EVB

Function or Macro Description Page
10-6 403 EVB User’s Manual

ppcMfiac1() Returns the value of the instruction
address compare register 1 (IAC1)

10-79

ppcMfiac2() Returns the value of the Instruction
address compare register 2 (IAC2)

10-80

ppcMficcr() Returns the value of the instruction cache
cacheability register (ICCR)

10-81

ppcMficdbdr() Returns the value of the Instruction Cache
Debug Data Register (ICDBDR)

10-82

ppcMfiocr() Returns the current value of the Input/Out-
put configuration Register (IOCR)

10-83

ppcMfmsr() Returns the value of the MSR 10-84

ppcMfpbl1() - ppcMfpbl2() Returns the value of their respective pro-
tection bound lower register (PBL)

10-85

ppcMfpbu1() -
ppcMfpbu2()

Returns the value of their respective pro-
tection bound upper register (PBU)

10-86

ppcMfpid() Returns the value of the Process ID Regis-
ter (PID)

10-87

ppcMfpit() Returns the value of the Programmable
Interval Timer (PIT)

10-88

ppcMfpvr() Returns the value of the processor version
register

10-89

ppcMfsgr() Returns the value of the Storage Guard
Register (SGR)

10-90

ppcMfsprg0()-
ppcMfsprg3()

Returns the value of the special purpose
register generals (SPRG0 - SPRG3)

10-91

ppcMfsrr0() Returns the value of SRR0 10-92

Table 10-1. Functions Specific to 403 EVB

Function or Macro Description Page
403 EVB Function Reference 10-7

ppcMfsrr1() Returns the current value of SRR1 10-93

ppcMfsrr2() Returns the current value of SRR2 10-94

ppcMfsrr3() Returns the current value of SRR3 10-95

ppcMftb() Returns the current time base data 10-96

ppcMftcr() Returns the value of the timer control regis-
ter

10-97

ppcMftlbhi() Returns the value of the high section of an
Unified TLB (UTLB) entry

10-98

ppcMftlblo() Returns the value of the lo section of an
Unified TLB (UTLB) entry

10-99

ppcMftsr() Returns the current value of the timer sta-
tus register (TSR)

10-100

ppcMfutb() Returns the current value of the User-
Mode Time Base (UTB)

10-101

ppcMfzpr() Returns the value of the Zone Protection
Register (ZPR)

10-102

ppcMtbesr() Sets the current value of the bus error syn-
drome register (BESR)

10-103

ppcMtbr0() - ppcMtbr7() Set the specified bank registers (BR0 -
BR7)

10-104

ppcMtbrh0() - ppcMtbrh7() Set the specified BRH registers (BRH0 -
BRH7)

10-106

ppcMtcdbcr() Sets the value of the Cache Debug Control
Register (CDBCR)

10-107

ppcMtdac1() -
ppcMtdac2()

Sets the values of the processor debug
address compare registers (DAC1 - DAC2)

10-108

Table 10-1. Functions Specific to 403 EVB

Function or Macro Description Page
10-8 403 EVB User’s Manual

ppcMtdbcr() Sets the value of the debug control register
(DBCR)

10-110

ppcMtdbsr() Sets the value of the debug status register
(DBSR)

10-111

ppcMtdccr() Sets the value of the Data Cache Cache-
ability Register (DCCR)

10-112

ppcMtdcwr() Sets the value of the Data Cache Write-
thru Register (DCWR)

10-113

ppcMtdmacc0() -
ppcMtdmacc3()

Sets the value of the DMA chained count
registers (DMACC0 - DMACC3)

10-114

ppcMtdmacr0() -
ppcMtdmacr3()

Sets the value of the DMA chained control
registers (DMACR0 DMACR3)

10-115

ppcMtdmact0() -
ppcMtdmact3()

Sets the value of the DMA count registers
(DMACT0 - DMACT3)

10-116

ppcMtdmada0() -
ppcMtdmada3()

Sets the value of the DMA destination
address register (DMADA0 - DMADA3)

10-117

ppcMtdmasa0() -
ppcMfdmasa3()

Sets the value of the DMA source/chained
address registers (DMASA0 - DMASA3)

10-118

ppcMtdmasr() Sets the value of the DMA status register
(DMASR)

10-119

ppcMtesr() Sets the value of the exception syndrom
register (ESR)

10-120

ppcMtevpr() Sets the value of the exception vector pre-
fix register (EVPR)

10-121

ppcMtexier() Sets the value of the external interrupt
enable register (EXIER)

10-122

Table 10-1. Functions Specific to 403 EVB

Function or Macro Description Page
403 EVB Function Reference 10-9

ppcMtexisr() Sets the value of the external interrupt sta-
tus register (EXISR)

10-123

ppcMtiac1() Sets the value of the instruction address
compare register 1 (IAC1)

10-124

ppcMtiac2() Sets the value of the Instruction address
compare register 2 (IAC2)

10-125

ppcMticcr() Sets the value of the instruction cache
cacheability register (ICCR)

10-126

ppcMtiocr() Sets the input/output configuration register
(IOCR)

10-127

ppcMtmsr() Sets the MSR 10-128

ppcMtpbl1() - ppcMfpbl2() Sets the value of their respective protection
bound lower register (PBL)

10-129

ppcMtpbu1() -
ppcMfpbu2()

Sets the value of their respective protection
bound upper register (PBU)

10-130

ppcMtpid() Sets the value of the Process ID Register
(PID)

10-131

ppcMtpit() Sets the programmable interval timer (PIT) 10-132

ppcMtsgr() Sets the value of the Storage Guard Regis-
ter (SGR)

10-133

ppcMtsprg0() -
ppcMtsprg3()

Sets the special purpose register generals
(SPRG0 - SPRG3)

10-134

ppcMtsrr0() Sets the SRR0 10-135

ppcMtsrr1() Sets the SRR1 10-136

ppcMtsrr2() Sets the SRR2 10-137

Table 10-1. Functions Specific to 403 EVB

Function or Macro Description Page
10-10 403 EVB User’s Manual

ppcMtsrr3() Sets the SRR3 10-138

ppcMttb() Sets the value of the current time base 10-139

ppcMttcr() Sets the timer control register 10-140

ppcMttlbhi() Sets the value of the high section of an
Unified TLB (UTLB) entry

10-141

ppcMttlblo() Sets the value of the low section of an Uni-
fied TLB (UTLB) entry

10-142

ppcMttsr() Sets the timer status register 10-143

ppcMtzpr() Sets the value of the Zone Protection Reg-
ister (ZPR)

10-144

ppcOrMsr() Performs the OR of a value and the current
MSR, updating the MSR

10-145

ppcSync() Causes the processor to wait until all data
cache lines scheduled to be written to main
storage have actually been written

10-146

ppcTlbia() Invalidates all entries in the TLB 10-147

ppcTlbsx() Searches for an effective valid address in
the TLB

10-148

processor_speed() Returns the internal clock speed of the 403
processor.

10-149

s1dbprintf() A version of printf() that may be used
before I/O has been established

10-150

s1dbprintfapp() A version of printf() that may be used
before I/O has been established from an
application thread group.

10-151

Table 10-1. Functions Specific to 403 EVB

Function or Macro Description Page
403 EVB Function Reference 10-11

s2dbprintf() A version of printf() that may be used
before I/O has been established for serial
port 2

10-153

s2dbprintfapp() A version of printf() that may be used
before I/O has been established for serial
port 2 from an application thread group.

10-154

timertick_install() Installs and starts the timer tick handler 10-156

timertick_remove() Removes the timer tick handler 10-157

vs1dbprintf() A version of printf() that uses polled writes
(no interrupts), and may be used before I/O
has been established and accepts a va_list
as a parameter instead of a variable num-
ber of parameters

10-158

Table 10-1. Functions Specific to 403 EVB

Function or Macro Description Page
10-12 403 EVB User’s Manual

async_init()

10
10
async_init()

Synopsis
#include <sys/asyncLib.h>

int driver_install(int *devhandle,async_init);

Library
asyncLib.a

Description
asyncLib.a is the asynchronous device driver that supports theone
asynchronous communication port on the 403 EVB platform. asyncLib.a
is installed by calling driver_install() with devhandle as the first parameter
and async_init as the second parameter.

Errors
None.

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe No
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• driver_install() : OS Open Programmer’s Reference
• “Device Drivers Supplied with the 403 EVB” on page 9-6
403 EVB Function Reference 10-13

biosenet_attach()

biosenet_attach()

Synopsis
#include <benetLib.h>

int biosenet_attach(unsigned long ipaddr, int init_flag);

Library
benetLib.a

Description
biosenet_attach() attaches the TCP/IP protocol stack to the Ethernet
device. The IP address should be different from the IP address defined to
the 403 EVB ROM Monitor. init_flag determines if biosenet_attach()
should initialize the Ethernet interface. The Ethernet device should be
initialized only if OS Open was loaded through an interface other than
Ethernet. A non-0 value will cause biosenet_attach() to initialize the
Ethernet and a 0 value causes biosenet_attach() not to initialize the
Ethernet interface. biosenet_attach() returns 0 if successful and -1 if it is
unsuccessful.

Note: When using biosenet_attach() the I/O should be initialized by
calling dbg_ioLib_init() rather than ioLib_init() .

Note: biosenet_attach() is unavailable for OS Open with Virtual Memory.

Errors
None.

Example
Initialize TCP/IP and define an IP address to biosenet_attach() .

#include<sys/tcpipLib.h>

int rc;

rc=tcpip_init(“myhostname”, 1 , 100);

if (rc!=0) {

return(-1);}

if (net_init()) return(-1);

return(biosenet_attatch(0x07010104,0)); /* specify the IP addr. and the init
flag*/

Attributes
Async Safe No
Cancel Safe No
Interrupt Handler Safe No
10-14 403 EVB User’s Manual

biosenet_attach()

Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• “Ethernet Device Driver” on page 9-16
403 EVB Function Reference 10-15

clock_set()

clock_set()

Synopsis
#include <clockLib.h>

int clock_set(void);

Library
clockLib.a

Description
clock_set() sets the OS Open POSIX clock to the value obtained from the
host clock.

Errors
[EIO] Host Time Service not available.

Attributes
Async Safe Yes/No*
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
Note: * Not Async Safe in OS Open with Virtual Memory

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes
10-16 403 EVB User’s Manual

dbg_ioLib_init()

dbg_ioLib_init()

Synopsis
#include <ioLib.h>

int dbg_ioLib_init(void);

Library
ioLib.a

Description
dbg_ioLib_init() initializes the I/O library. dbg_ioLib_init() is similar to
ioLib_init() except dbg_ioLib_init() does not reset the EVPR register.
dbg_ioLib_init() should be used if the benetLib.a is used.

If successful, dbg_ioLib_init() returns 0. Otherwise, dbg_ioLib_init()
returns –1.

Errors
[ENOMEM] Insufficient memory to allocate first level

interrupt handler control areas.

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
ioLib_init(), p. 10-39
403 EVB Function Reference 10-17

dcache_flush()

dcache_flush()

Synopsis
#include <ioLib.h>

void dcache_flush(void *address, unsigned int count);

Library
ioLib.a

Description
dcache_flush() flushes cache lines, beginning at the effective address
and continuing for count bytes.

A cache line flush forces the current contents of the cache line to main
storage (if the line is valid and marked as modified) and then invalidates
the line.

Note: Since cache flushes occur on cache line boundaries, the operation
can occur outside of the bounds specified by the function call. For
example, if address is X'216' and count is X'12', two cache lines, spanning
addresses from X'200' to X'23F', would be flushed.

Errors
None.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• dcache_invalidate(), p. 10-19
10-18 403 EVB User’s Manual

dcache_invalidate()

dcache_invalidate()

Synopsis
#include <ioLib.h >

void dcache_invalidate(void *address, unsigned int count);

Library
ioLib.a

Description
dcache_invalidate() invalidates cache lines beginning at the effective
address given by address and continuing for count bytes.

Note: Since cache invalidation occurs on cache line boundaries,
invalidation can occur outside of the bounds implied by this command. For
example, if address is X '104' and count is 16, the cache line spanning the
addresses from X '100' to X '120' would be invalidated.

Errors
None.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• dcache_flush(), p. 10-18
403 EVB Function Reference 10-19

dma_disable()

dma_disable()

Synopsis
#include <ioLib.h>

int dma_disable(unsigned int channel);

Library
ioLib.a

Description
dma_disable() inhibits DMA activity on the channel specified by channel.

Note: Although dma_disable() is not async safe in general, it can be
safely called by concurrently executing threads as long as each thread
specifies a unique DMA channel.

If successful dma_disable() returns 0. Otherwise -1.

Errors
[EINVAL] channel does not refer to a valid DMA channel.

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• dma_setup(), p. 10-21
• dma_status(), p. 10-23
10-20 403 EVB User’s Manual

dma_setup()

dma_setup()

Synopsis
#include <ioLib.h>

int dma_setup(unsigned int channel, int type, void *address,
 unsigned int count, unsigned long dmacr,
unsigned long count, void *dst_address, void
*src_address, unsigned long chained_count);

Library
ioLib.a

Description
dma_setup() initializes the DMA channel registers for subsequent DMA
slave transfers.

dmacr is formed from the appropriate combination of DMA control register
bits from the file <ppcLib.h> . For example, to specify a 32 bit memory to
memory DMA transfer, specify DMACR as (DMACR_CE |
DMACR_PW_32 | DMACR_DAI |DMACR_TCE). The value in DMACR is
loaded into the requested DMA channel’s control register to enable a DMA
transfer. For a description of the DMA control register bits, see the
PPC403GA or PPC403GC Embedded Controller User’s Manuals.

count is the requested number of DMA transfers. Valid values range from 1
to 65536 (inclusive). This value is loaded into the DMACT register of the
appropriate channel.

dst_address is the absolute memory address for the buffered or fly-by
mode DMA transfers. This memory address will be either the source or the
destination of the next DMA transfer depending on the value of the transfer
direction bit in DMACR. For memory to memory mode transfers,
dst_adress is the absolute destination memory address.

src_address is the absolute source memory address for memory to
memory mode transfers. If chaining is enabled, src_address is the
absolute memory address for the next (chained) transaction. src_address
is only used if DMACR indicates that the requested DMA is either a
memory to memory transaction or chaining is enabled. Otherwise it is
ignored.

chained_count is the requested number of DMA transfers for the next
(chained) transaction. chained_count is only used if DMACR indicates that
chaining is enabled. Otherwise it is ignored.

• Note: Chaining is valid for DMA channels 1 thru 3 for only 403GA
processors with module markings of PPC 403GA-JB.... and beyond and
all 403GC processors, See “ppcMfdmacc0() - ppcMfdmacc3()‚’ p. 66 .
403 EVB Function Reference 10-21

dma_setup()
Note: Although dma_setup() is not async safe in general, it can be safely
called by concurrently executing threads as long each thread specifies a
unique DMA channel.

Errors
[EINVAL] channel does not refer to a valid DMA channel.

type is not a defined type. count exceeds 65535.
count is 0 or 65536. DMACR specifies both
memory to memory and chaining. Chaining is
not supported on the specified channel. DMACR
specifies chaining and chained_count is 0 or
exceeded 65536.

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• dma_disable(), p. 10-20
• dma_status(), p. 10-23
10-22 403 EVB User’s Manual

dma_status()

dma_status()

Synopsis
#include <ioLib.h>

int dma_status(unsigned int channel, struct dma_stat *dstat);

Library
ioLib.a

Description
dma_status() returns the DMA status for the channel specified by
channel.

dstat->current_address contains the current contents of the DMADA
register for the specified channel which is the address of the next memory
access.

dstat->current_count contains the current contents of the DMACT register
for the specified channel which is the number of transfers remaining in the
current DMA transaction. dstat->current_count will be 0 when a DMA
transaction completes. Note: dstat->current_count will also be 0 until the
first DMA transfer occurs on a DMA transaction with 65536 transfers.

dstat->count_status, dstat->transfer_status, dstat->error_status,
dstat->chained_status, dstat->internal_req, dstat->external_req, and
dstat->busy reflect the current values of the status bits in the DMA status
register (DMASR) for the specified channel. For a description of the
DMASR, see the PPC403GA and PPC403GC Embedded Controller
User’s Manuals.

If successful dma_status() returns 0. Otherwise -1.

Errors
[EINVAL] channel does not refer to a valid DMA channel.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes
403 EVB Function Reference 10-23

dma_status()
References
• dma_setup(), p. 10-21
• dma_disable(), p. 10-20
10-24 403 EVB User’s Manual

enet_disable_ipinput()

enet_disable_ipinput()

Synopsis
#include <enetLib.h>

void enet_disable_ipinput(void);

Library
enetLib.a

Description
enet_disable_ipinput() disables the forwarding of packets to the TCP/IP
protocol stack. When forwarding is disabled Ethernet packets received by
the Ethernet device driver can be read by the application using
enet_recv_packet() .

Errors
None.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• enet_native_attach(), p. 10-27
• enet_enable_ipinput(), p. 10-26
• enet_send_packet(), p. 10-30
• enet_recv_packet(), p. 10-29
403 EVB Function Reference 10-25

enet_enable_ipinput()

enet_enable_ipinput()

Synopsis
#include <enetLib.h>

void enet_enable_ipinput(void);

Library
enetLib.a

Description
enet_enable_ipinput() enables the forwarding of packets to the TCP/IP
protocol stack. When forwarding is enabled all Ethernet packets received
by the Ethernet device driver are forwarded to the TCP/IP stack.

Errors
None.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• enet_native_attach(), p. 10-27
• enet_disable_ipinput(), p. 10-25
• enet_send_packet(), p. 10-30
• enet_recv_packet(), p. 10-29
10-26 403 EVB User’s Manual

enet_native_attach()

enet_native_attach()

Synopsis
#include <enetLib.h>

int enet_native_attach(unsigned long processor_speed, unsigned
long sram_size);

Library
enetLib.a

Description
enet_native_attach() attaches the TCP/IP protocol stack to the Ethernet
device. The processor_speed specifies the CPU speed. The sram_size
specifies the Ethernet controller’s memory size. On the 403 EVB the
sram_size parameter should be set to 8192. enet_native_attach() returns
0 if successful and -1 if it is unsuccessful.

Errors
None.

Example
The following is an example of initializing the TCP/IP protocol stack and
attaching the Ethernet device.

#include <enet.h>
#define ENETHOST “403_board”
#define ENET_CONFIG “ ent0 403_board netmask 255.255.240.0 up”
int do_enet()
{

int rc;
rc = tcpip_init(ENETHOST, 1, 1000); /* Initialize the TCP/IP library */
if(rc != 0)
return -1;

rc = net_init(); /*initialize netLib */
if(rc != 0)
return -1;

rc = enet_native_attach(25000000,8 * 1024); /* attach the tcp/ip proto.
stack */
if(rc != 0)
return -1;

rc = ifconfig(ENET_CONFIG); /* configure network interface */
if(rc != 0)
return -1;
403 EVB Function Reference 10-27

enet_native_attach()

return 0;
}

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe No
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• enet_disable_ipinput(), p. 10-25
• enet_enable_ipinput(), p. 10-26
• enet_send_packet(), p. 10-30
• enet_recv_packet(), p. 10-29
10-28 403 EVB User’s Manual

enet_recv_packet()

enet_recv_packet()

Synopsis
#include <enetLib.h>

struct mbuf *enet_recv_packet(struct timespec *timeout);

Library
enetLib.a

Description
enet_recv_packet() returns a pointer to the mbuf chain holding the packet
received by the Ethernet device driver. enet_recv_packet() will block
waiting for packet reception for the maximum of time specified by timeout,
If successful enet_recv_packet() returns a pointer to the mbuf chain
containing the Ethernet packet, otherwise NULL is returned.

Errors
None.

Attributes
Async Safe Yes
Cancel Safe No
Interrupt Handler Safe No
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• enet_native_attach(), p. 10-27
• enet_disable_ipinput(), p. 10-25
• enet_enable_ipinput(), p. 10-26
• enet_send_packet(), p. 10-30
403 EVB Function Reference 10-29

enet_send_packet()

enet_send_packet()

Synopsis
#include <enetLib.h>

int enet_send_packet(struct ether_header *eh, struct mbuf *m, int
total);

Library
enetLib.a

Description
enet_send_packet() transmits the packet described by eh and m. The
Ethernet packet header is specified in eh. The destination, source
hardware address, and packet type must be set in the eh structure prior to
calling enet_send_packet() . m points to the mbuf chain that contains the
actual packet. total must be set to the number of bytes to be transmitted.
The value of total is set to the size of the Ethernet header plus the size of
the packet contained in mbuf. If successful enet_send_packet() returns 0
otherwise -1 is returned. enet_send_packet will timeout after 3 seconds.

Errors
None.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• enet_native_attach(), p. 10-27
• enet_disable_ipinput(), p. 10-25
• enet_enable_ipinput(), p. 10-26
• enet_recv_packet(), p. 10-29
10-30 403 EVB User’s Manual

escc_init()

escc_init()

Synopsis
#include <esccLib.h>

int driver_install(int *devhndle, escc_init);

Library
esccLib.a

Description
esccLib.a is the device driver for the S2 asynchronous communication
port found in the standard I/O subsystem on the 403 EVB platform.
esccLib.a is installed by passing escc_init to driver_install() as the
second parameter. The first parameter is the device handle. For more
information about driver_install() and escc_init refer to “Chapter 6:
Device Drivers for 403 EVB.

Errors
None.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe No
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• “Extended Serial Communication Controller Device Driver” on page 9-11
403 EVB Function Reference 10-31

ext_int_config()

ext_int_config()

Synopsis
#include <ioLib.h>

int ext_int_config(int event, int flags);

Library
ioLib.a

Description
ext_int_config() configures the interrupt type in the Input/Output
Configuration register. ext_int_config() can be used to determine the type
of external interrupt that will be processed. File <ioLib.h> contains several
defines for the external interrupt flags for setting polarity sensitivity.

File <flih.h> contains several defines for the external interrupt flags.

The ext_int_config() function returns 0 when it is successful.

Errors
None.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• ext_int_enable(), p. 10-34
• ext_int_install(), p. 10-35
• ext_int_query(), p. 10-37
• ioLib_init(), p. 10-39
10-32 403 EVB User’s Manual

ext_int_disable()

ext_int_disable()

Synopsis
#include <ioLib.h>

void ext_int_disable(int event);

Library
ioLib.a

Description
ext_int_disable() disables the interrupt level specified by event. DMA
interrupt 2The ext_int_disable() function returns nothing.

Errors
None.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• ext_int_enable(), p. 10-34
• ext_int_install(), p. 10-35
• ext_int_query(), p. 10-37
• ioLib_init(), p. 10-39
403 EVB Function Reference 10-33

ext_int_enable()

ext_int_enable()

Synopsis
#include <ioLib.h>

void ext_int_enable(int event);

Library
ioLib.a

Description
ext_int_enable() enables the interrupt level specified by event.

ext_int_enable() returns nothing.

Errors
None.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• ext_int_config(), p. 10-32
• ext_int_install(), p. 10-35
• ext_int_query(), p. 10-37
• ioLib_init(), p. 10-39
10-34 403 EVB User’s Manual

ext_int_install()

ext_int_install()

Synopsis
#include <flih.h>

#include <ioLib.h>

int ext_int_install(int event, flih_t *new_flih, flih_t *old_flih);

Library
ioLib.a

Description
ext_int_install() installs a first level interrupt handler (FLIH) for event.

If new_flih is NULL, the current interrupt handler is removed for the
specified event. If new_flih is non-NULL, it points to a flih_t structure
containing the following fields:

flih_stack Pointer to the first stack location; obtained by
allocating memory and adding the size of the
stack. flih_stack must be 16 byte aligned.

flih_function Pointer to a function invoked when event occurs.

arg A user-defined (void *) value passed to
flih_function.

If old_flih is not NULL, the previous values of flih_function, flih_stack, and
arg are stored in the structure pointed to by old_flih.

If successful, ext_int_install() returns 0. Otherwise, ext_int_install()
returns –1.

Errors
[EINVAL] event does not refer to a valid event.

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes
403 EVB Function Reference 10-35

ext_int_install()
References
• ext_int_config(), p. 10-32
• ext_int_enable(), p. 10-34
• ext_int_query(), p. 10-37
• ioLib_init(), p. 10-39
10-36 403 EVB User’s Manual

ext_int_query()

ext_int_query()

Synopsis
#include <ioLib.h>

#include <flih.h>

int ext_int_query(int event, flih_t *flih);

Library
ioLib.a

Description
ext_int_query() returns information about the first level interrupt handler
(FLIH), if any, for event.

The flih argument points to a flih_t structure containing the following fields:

flih_stack Pointer to the first stack location; obtained by
allocating memory and adding the size of the
stack.

flih_function Pointer to a function invoked when event occurs.

arg A user-defined (void *) value passed to
flih_function. If no FLIH is installed for the
specified level, each field in the flih_t structure is
assigned NULL.

If successful, ext_int_query() returns 0. Otherwise, ext_int_query()
returns –1.

Errors
[EINVAL] event does not refer to a valid event.

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• ext_int_config(), p. 10-32
• ext_int_enable(), p. 10-34
• ext_int_install(), p. 10-35
• ioLib_init(), p. 10-39
403 EVB Function Reference 10-37

fpemul_init()

fpemul_init()

Synopsis
#include <fpeLib.h>

void fpemul_init(void);

Library
fpCSLib.a

Description
fpemul_init() installs the floating point interrupt handler. fpemul_init() is
only needed when floating point emulation is required with the XCOFF
version of OS Open for PowerPC processors without floating point
hardware. fpemul_init() is not required for floating point when running with
the ELF version of OS Open. fpemul_init() returns nothing.

Errors
None.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes
10-38 403 EVB User’s Manual

ioLib_init()

ioLib_init()

Synopsis
#include <ioLib.h>

int ioLib_init(void);

Library
ioLib.a

Description
ioLib_init() initializes the I/O library.

If successful, ioLib_init() returns 0. Otherwise, ioLib_init() returns –1.

ioLib_init() should not be used on a 403 EVB when using the ROM
Monitor Ethernet interface or the ROM monitor debugger.
dbg_ioLib_init() should be used instead.

Errors
[ENOMEM] Insufficient memory to allocate first level

interrupt handler control areas.

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes
403 EVB Function Reference 10-39

oakenet_attach()

oakenet_attach()

Synopsis
#include <enetLib.h>

int oakenet_attach(unsigned long processor_speed, unsigned long
sram_size);

Library
enetLib.a

Description
oakenet_attach() attaches the TCP/IP protocal stack to the Ethernet
device. The processor_speed specifies the CPU speed. The sram_size
specifies the Ethernet controller’s memory size. On the 403 EVB the
sram_size parameter should be set to 8192. oakenet_attach() returns 0 if
successful and -1 if it is unsuccessful.

Errors
None.

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe No
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• enet_disable_ipinput(), p. 10-25
• enet_enable_ipinput(), p. 10-26
• enet_send_packet(), p. 10-30
• enet_recv_packet(), p. 10-29

11
11-40 403 EVB User’s Manual

ppcAbend()

10
ppcAbend()

Synopsis
#include <ppcLib.h>

void ppcAbend(void)

Library
ppcLib.a

Description
ppcAbend() executes an invalid opcode forcing a Program Check
interrupt.

Errors
None.

Example

• Force an illegal instruction exception:

ppcAbend()

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-41

ppcAndMsr()

ppcAndMsr()

Synopsis
#include <ppcLib.h>

unsigned long ppcAndMsr(unsigned long value);

Library
ppcLib.a

Description
ppcAndMsr() ANDs value with the contents of the MSR.

The MSR is updated with the result of the AND operation.

ppcAndMsr() returns the previous contents of the MSR.

Refer to the <ppcLib.h> file for the defines of the MSR constants:

Errors
None.

Example

• Disable external interrupts.

unsigned long orig_msr = ppcAndMsr(~ppcMsrEE);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• ppcOrMsr(), p. 10-145
• ppcMtmsr(), p. 10-128
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-42 403 EVB User’s Manual

ppcCntlzw()

ppcCntlzw()

Synopsis
#include <ppcLib.h>

unsigned long ppcCntlzw(unsigned long value);

Library
ppcLib.a

Description
ppcCntlzw() counts consecutive leading zeros in value.

ppcCntlzw() returns the count, which ranges from 0 through 32, inclusive.

Errors
None.

Example

• Return count of leading zeros in variable k.

int k;

 unsigned long k = ppcCntlzw(0x0700AA55); /* k = 5 */

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-43

ppcDcbf()

ppcDcbf()

Synopsis
#include <ppcLib.h>

void ppcDcbf(void *addr);

Library
ppcLib.a

Description
ppcDcbf() copies the cache block at the effective address specified by
addr back to main storage (if the block resides in cache and has been
modified with respect to main storage) and then invalidates the cache
block.

Effectively, this function acts like ppcDcbst() followed by ppcDcbi() .

Errors
None.

Example

• Flush the cache line at the effective address X'1000' to main storage and
then invalidate the cache line. You might do this in preparation for a
DMA slave transfer.

ppcDcbf((void *)0x1000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• ppcDcbst(), p. 10-46
• ppcDcbi(), p. 10-45
• ppcDcbz(), p. 10-47
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-44 403 EVB User’s Manual

ppcDcbi()

ppcDcbi()

Synopsis
#include <ppcLib.h>

void ppcDcbi(void *addr);

Library
ppcLib.a

Description
ppcDcbi() invalidates the cache block containing addr, discarding any
modified contents if the block is valid in cache.

Errors
None.

Example

• Invalidate the cache line beginning with 0x3000. This might be done
before reading an area of storage updated by a DMA transfer.

ppcDcbi((void *)0x3000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• ppcDcbst(), p. 10-46
• ppcDcbi(), p. 10-45
• ppcDcbz(), p. 10-47
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-45

ppcDcbst()

ppcDcbst()

Synopsis
#include <ppcLib.h>

void ppcDcbst(void *addr);

Library
ppcLib.a

Description
ppcDcbst() copies the cache block containing addr to main storage, if the
block is valid in cache and has been modified with respect to main storage.

Errors
None.

Example

• Force the cache line beginning with 0x4000 to memory if the block is
valid and out of sync with storage. This would be done to synchronize
the cache and storage without invalidating the cache line.

ppcDcbst((void *)0x4000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• ppcDcbf(), p. 10-44
• ppcDcbi(), p. 10-45
• ppcDcbz(), p. 10-47
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-46 403 EVB User’s Manual

ppcDcbz()

ppcDcbz()

Synopsis
#include <ppcLib.h>

void ppcDcbz(void *addr);

Library
ppcLib.a

Description
ppcDcbz() sets the cache block containing the byte referenced by addr to
0.

The line is established, if necessary, without fetching the line from main
storage.

Note: If an invalid real address is specified, problems could occur when a
subsequent attempt is made by the cache unit to store that line to main
storage.

Errors
None.

Example

• Assume buffer is 16 cache lines long and cache aligned. To quickly set it
to 0, set to first buffer address.

 char *bpt = buffer;
 for(j = 0; j < 16; j++)
 {
 ppcDcbz((void *)bpt);
 bpt += cache_line_size;
 }

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes
403 EVB Function Reference 10-47

ppcDcbz()
References
• ppcDcbf(), p. 10-44
• ppcDcbi(), p. 10-45
• ppcDcbst(), p. 10-46
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-48 403 EVB User’s Manual

ppcDflush()

ppcDflush()

Synopsis
#include <ppcLib.h>

void ppcDflush(void);

Library
ppcLib.a

Description
ppcDflush() will write 0’s into the data cache and then turn data cache off
by writing 0’s into the Data Cache Cacheability Register (DCCR).

Errors
None.

Example

• Force data reads from memory instead of from the data cache:

ppcDflush();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-49

ppcEieio()

ppcEieio()

Synopsis
#include <ppcLib.h>

void ppcEieio(void);

Library
ppcLib.a

Description
ppcEieio() ensures that all storage references before the call finish before
any storage references after the call start.

Errors
None.

Example

• Ensure storage references are done in order:

char *one_loc = (char *)0x202;
char *two_loc = (char *)0x204;

one_loc = 0xAA; / write a 0xAA to 0x202 */
ppcEieio(); /* insure the store completes before setting two_loc */
*two_loc = 0x55;

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-50 403 EVB User’s Manual

ppcHalt()

ppcHalt()

Synopsis
#include <ppcLib.h>

void ppcHalt(void);

Library
ppcLib.a

Description
ppcHalt() is a one instruction spin loop, effectively putting the processor in
an enabled wait at the point of invocation.

Errors
None.

Example

• Wait at the point of invocation:

ppcHalt();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-51

ppcIcbi()

ppcIcbi()

Synopsis
#include <ppcLib.h>

void ppcIcbi(void *addr);

Library
ppcLib.a

Description
ppcIcbi() invalidates the Instruction Cache Block pointed to by the address
passed. This may be done after updating an instruction.

Errors
None.

Example

• Write a trap into location 0x3000:

unsigned in * i_addr = (int *) 0x3000;

i_addr = 0x7c800008; / tw instruction */

ppcDbcst((void *) 0x3000);

ppcIcbi((void *) 0x3000);

ppcIsync();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-52 403 EVB User’s Manual

ppcIsync()

ppcIsync()

Synopsis
#include <ppcLib.h>

void ppcIsync(void);

Library
ppcLib.a

Description
ppcIsync() causes the processor to discard any instructions that may
have been prefetched before ppclsync() . This call must be used after
modifying instruction storage.

Errors
None.

Example

• Place a trap into a given address:

*trap_address = 0x7F000008;
 ppcIsync();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-53

ppcMfbear()

ppcMfbear()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfbear(void)

Library
ppcLib.a

Description
ppcMfbear() returns the current value of the Bus Error Address Register.

Errors
None.

Example

• After a machine check, retrieve the BEAR:

bear = ppcMfbear();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• ppcMfbesr(), p. 10-55
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-54 403 EVB User’s Manual

ppcMfbesr()

ppcMfbesr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfbesr(void);

Library
ppcLib.a

Description
ppcMfbesr() returns the current value of the Bus Error Syndrome
Register, which identifies the nature of a bus error detected by the
processor.

The file <ppcLib.h> defines constants for use with the BESR.

Errors
None.

Example

• Retrieve bus error syndrome information.

besr = ppcMfbesr()

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• ppcMfbear(), p. 10-54
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-55

ppcMfbr0() • ppcMfbr7()

ppcMfbr0() - ppcMfbr7()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfbr0(void);

unsigned long ppcMfbr1(void);

unsigned long ppcMfbr2(void);

unsigned long ppcMfbr3(void);

unsigned long ppcMfbr4(void);

unsigned long ppcMfbr5(void);

unsigned long ppcMfbr6(void);

unsigned long ppcMfbr7(void);

Library
ppcLib.a

Description
ppcMfbr0() - ppcMfbr7() return the value of their respective bank
registers (BR0 - BR7). Four bank registers (BR0 through BR3) control
SRAM devices only; four bank registers (BR4 through BR7) control SRAM
or DRAM devices. The file <ppcLib.h> has several constants defined for
use with the BR registers with both the 403GA and 403GC processors.

Errors
None.

Example

• Retrieve the value of BR4. A device driver may use the BR4 value to
determine if it is accessing a SRAM or DRAM device. Bit 31 would be 0
for a DRAM device and 1 for a SRAM device.

unsigned long current_br4=ppcMfbr4();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes
10-56 403 EVB User’s Manual

ppcMfbr0() • ppcMfbr7()
References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-57

ppcMfbrh0() • ppcMfbrh7()

ppcMfbrh0() - ppcMfbrh7()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfbrh0(void);

unsigned long ppcMfbrh1(void);

unsigned long ppcMfbrh2(void);

unsigned long ppcMfbrh3(void);

unsigned long ppcMfbrh4(void);

unsigned long ppcMfbrh5(void);

unsigned long ppcMfbrh6(void);

unsigned long ppcMfbrh7(void);

Library
ppcLib.a

Description
ppcMfbrh0() - ppcMfbrh7() return the value of their respective BRH
register(BRH0 - BRH7).

Errors
None.

Example

• Retrieve the value of BRH4.

unsigned long current_brh4=ppcMfbrh4();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA No
PowerPC 403GC No
PowerPC 403GCX Yes

References
• PPC403GCX Embedded Controller User’s Manual
10-58 403 EVB User’s Manual

ppcMfcdbcr()

ppcMfcdbcr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfcdbcr(void);

Library
ppcLib.a

Description
ppcMfcdbcr() returns the value of the Cache Debug Control Register
(CDBCR).

<ppcLib.h> has constants defined for use with the CDBCR register.

Errors
None.

Example

• Retrieve the current value of the CDBCR:

unsigned long cdbcr_value=ppcMfcdbcr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-59

ppcMfdac1() • ppcMfdac2()

ppcMfdac1() - ppcMfdac2()

Synopsis
#include <ppcLib.h>

void ppcMfdac1(unsigned long dac1_value);

void ppcMfdac1(unsigned long dac1_value);

Library
ppcLib.a

Description
ppMfdac1() - ppcMfdac2() return the value of the appropriate Data
Address Compare register. the DAC1 and DAC2 registers contain
addresses for which debug events may be taken, depending on the values
set in the DBCR.

Errors
None.

Example

• Get the value of DAC1.

unsigned long dac1_value = ppcMfdac1();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-60 403 EVB User’s Manual

ppcMfdbcr()

ppcMfdbcr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfdbcr(void);

Library
ppcLib.a

Description
ppcMfdbcr() returns the value of the processor debug control register
(DBCR). The DBCR is used to enable debug events, reset the processor,
control timer operations during debug events, and set the debug mode of
the processor.

WARNING: Enabling bits 0 and 1 can cause unexpected results. Enabling
bits 2 and 3 will cause a processor reset to occur. The DBCR is designed
to be used by development tools, not applications.

Refer to the <ppcLib.h> for defined constants for the DBCR.

Errors
None.

Example

• Retrieve the value of DBCR register. A debugger would require the
value of the DBCR:

unsigned long current_DBCR=ppcMfdbcr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-61

ppcMfdbsr()

ppcMfdbsr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfdbsr(void);

Library
ppcLib.a

Description
ppcMfdbsr() returns the value of the processor debug status register
(DBSR). The DBSR contains the status of debug events, the JTAG serial
buffers, and the most recent reset.

The file <ppcLib.h> defines constants that can be used when referring to
the DBSR.

Errors
None.

Example

• Retrieve the value of DBSR register. A debugger would require the value
of the DBSR:

unsigned long current_DBSR=ppcMfdbsr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-62 403 EVB User’s Manual

ppcMfdccr()

ppcMfdccr()

Synopsis
#include <ppcLib.h>

void ppcMfdccr(unsigned long dccr_value);

Library
ppcLib.a

Description
ppcMfdccr() returns the value of Data Cache Cacheability Register
(DCCR).

Errors
None.

Example

• Set the value of the DCCR:

#include<ppcLib.h>

unsigned long dccr_value=ppcMfdccr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-63

ppcMfdcwr()

ppcMfdcwr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfdcwr(void);

Library
ppcLib.a

Description
ppcMfdcwr() returns the value of the Data Cache Write-thru Register
(DCWR).

Errors
None.

Example

• Retrieve the current value of the DCWR:

unsigned long dcwr_value=ppcMfdcwr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-64 403 EVB User’s Manual

ppcMfdear()

ppcMfdear()

Synopsis
#include <ppcLib.h>

void ppcMfdear(unsigned long dear_value);

Library
ppcLib.a

Description
ppcMfdear() returns the value of Data Exception Address Register
(DEAR).

Errors
None.

Example

• Set the value of the DEAR:

#include<ppcLib.h>

unsigned long dear_value=ppcMfdear();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-65

ppcMfdmacc0() • ppcMfdmacc3()

ppcMfdmacc0() - ppcMfdmacc3()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfdmacc0(void);

unsigned long ppcMfdmacc1(void);

unsigned long ppcMfdmacc2(void);

unsigned long ppcMfdmacc3(void);

Library
ppcLib.a

Description
ppcMfdmacc0() - ppcMfdmacc3() returns the value of the corresponding
DMA chained count register (DMACC0 -DMACC3). When chaining is
enabled for the corresponding channel, the corresponding DMACC
contains the number of transfers in the next DMA transaction for the
corresponding channel 0. When chaining is disabled for the corresponding
channel, the corresponding DMACC is not used. Bits 16 to 31 contain the
count value.

Note: ppcMfdmacc1() thru ppcMfdmacc3() are only valid for 403GA
processors with module markings of PPC403GA-JB.... and beyond and all
403GC processors.

Errors
None.

Example

• Retrieve the current value of the DMACC0:

unsigned long dmacc0_value=ppcMfdmacc0();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
10-66 403 EVB User’s Manual

ppcMfdmacc0() • ppcMfdmacc3()

• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-67

ppcMfdmacr0() • ppcMfdmacr3()

ppcMfdmacr0() - ppcMfdmacr3()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfdmacr0(void);

unsigned long ppcMfdmacr1(void);

unsigned long ppcMfdmacr2(void);

unsigned long ppcMfdmacr3(void);

Library
ppcLib.a

Description
ppcMfdmacr0() - ppcMfdmacr3() return the value of the DMA channel
control registers (DMACR0 - DMACR3). The DMACRs set up and enables
the DMA channels. The file <ppcLib.h> contains several constants that
can be used when accessing the DMACR’s.

Errors
None.

Example

• Retrieve the current value of the DMACR0:

unsigned long dmacr0_value=ppcMfdmacr0();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-68 403 EVB User’s Manual

ppcMfdmact0() • ppcMfdmact3()

ppcMfdmact0() - ppcMfdmact3()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfdmact0(void);

unsigned long ppcMfdmact1(void);

unsigned long ppcMfdmact2(void);

unsigned long ppcMfdmact3(void);

Library
ppcLib.a

Description
ppcMfdmact0() - ppcMfdmact3() return the value of the DMA count
registers (DMACT0 - DMACT3). The DMACT registers contains the
number of transfers left in the DMA transaction for the channel.

Errors
None.

Example

• Retrieve the current value of the DMACT0:

unsigned long dmact0_value=ppcMfdmact0();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-69

ppcMfdmada0() • ppcMfdmada3()

ppcMtfmada0() - ppcMfdmada3()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfdmada0(void);

unsigned long ppcMfdmada1(void);

unsigned long ppcMfdmada2(void);

unsigned long ppcMfdmada3(void);

Library
ppcLib.a

Description
ppcMfdmada0() - ppcMfdmada3() return the value of the DMA
destination address registers (DMADA0 - DMADA3)). The DMADA
registers contain the memory addresses for transfers between memory
and peripheral or the destination addresses for memory to memory
transfers.

Errors
None.

Example

• Retrieve an address from DMADA3:

unsigned long dmada3_value = ppcMfdmada3();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-70 403 EVB User’s Manual

ppcMfdmasa0() • ppcMfdmasa3()

ppcMfdmasa0() - ppcMfdmasa3()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfdmasa0(void);

unsigned long ppcMfdmasa1(void);

unsigned long ppcMfdmasa2(void);

unsigned long ppcMfdmasa3(void);

Library
ppcLib.a

Description
ppcMfdmasa0() - ppcMfdmasa3() return the value of the DMA
source/chained address registers (DMASA0 - DMASA3). The DMASAs
are only used in memory to memory move mode for channels 0 through
channels 3 or in fly-by mode when chaining has been enabled for channel
0

Errors
None.

Example

• Retrieve the current value of the DMASA0:

unsigned long dmasa0_value=ppcMfdmasa0();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-71

ppcMfdmasr()

ppcMfdmasr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfdmasr(void);

Library
ppcLib.a

Description
ppcMfdmasr() returns the value of the DMA status register (DMASR).

The value of the DMASR may be used to determine the status of the DMA
channels. The file <ppcLib.h> contains several constants that may be
used when accessing the DMASR .

TErrors
None.

Example

• Retrieve the current value of the DMASR:

unsigned long dmasr_value=ppcMfdmasr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-72 403 EVB User’s Manual

ppcMfesr()

ppcMfesr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfesr(void);

Library
ppcLib.a

Description
ppcMfesr() returns the value of the Exception Syndrome Register (ESR).
Bits 7 to 31 are reserved.

Errors
None.

Example

• Get the ESR value:

esr_value= ppcMfesr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-73

ppcMfevpr()

ppcMfevpr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfevpr(void);

Library
ppcLib.a

Description
ppcMfevpr() returns the value of the exception vector prefix register
(EVPR). Bits 0 to 15 contain the prefix of the address of the exception
processing routines. Bits 15 to 31 are reserved.

Errors
None.

Example

• Get the EVPR value:

evpr_value= ppcMfevpr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-74 403 EVB User’s Manual

ppcMfexier()

ppcMfexier()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfexier(void);

Library
ppcLib.a

Description
ppcMfexier() returns the value of the external interrupt enable register
(EXIER).

This register contains enables for six of the external hardware interrupts,
the DMA channel interrupts, the JTAG serial port interrupts and the serial
port interrupts. The file <ppcLib.h> contains several constants that can be
used when accessing the EXIER.

Errors
None.

Example

• Retrieve the current value of the EXIER:

unsigned long exier_value=ppcMfexier();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-75

ppcMfexisr()

ppcMfexisr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfexisr(void);

Library
ppcLib.a

Description
ppcMfexisr() returns the value of the external interrupt status register
(EXISR). The EXISR contains the status of the five external hardware
interrupts, the DMA channel interrupts, the JTAG serial port interrupts and
the serial port interrupts.The file <ppcLib.h> contains several constants
that can be used when accessing the EXISR.

Errors
None.

Example

• Read the value of the EXISR:

unsigned long exisr_value=ppcMfexisr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-76 403 EVB User’s Manual

ppcMfgpr1()

ppcMfgpr1()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfgpr1(void);

Library
ppcLib.a

Description
ppcMfgpr1() returns the current value of GPR(1).

Typically, this is the value of the current stack frame.

Errors
None.

Example
See ppcMfgpr2() , p. 10-78.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-77

ppcMfgpr2()

ppcMfgpr2()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfgpr2(void)

Library
ppcLib.a

Description
ppcMfgpr2() returns the current value of GPR(2).

For XCOFF-based OS Open this is typically the value of the table of
contents (TOC) pointer for the current execution context.

Errors
None.

Example

• Retrieve TOC and stack frame base from current context:

toc = ppcMfgpr2();
unsigned long stack_base = ppcMfgpr1();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-78 403 EVB User’s Manual

ppcMfiac1()

ppcMfiac1()

Synopsis
#include <ppcLib.h>

unsigned long iac1_value = ppcMfiac1(void);

Library
ppcLib.a

Description
ppcMfiac1() returns the value of the instruction address compare register
1 (IAC1). The IAC1 contains the address of the instruction that the debug
event will be based on. The IA1 field of the Debug Control Register
(DBCR) controls the instruction address 1 debug event. Bits 30 and 31 of
the IAC1 are reserved, since the address must be word aligned.

Errors
None.

Example

• Get the IAC1 register value:

iac1_value =ppcMfiac1();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-79

ppcMfiac2()

ppcMfiac2()

Synopsis
#include <ppcLib.h>

unsigned long iac2_value = ppcMfiac2(void);

Library
ppcLib.a

Description
ppcMfiac2() returns the value of the instruction address compare register
2 (IAC2). The IAC2 contains the address of the instruction that the debug
event will be based on. The IA2 field of the Debug Control Register
(DBCR) controls the instruction address 2 debug event. Bits 30 and 31 of
the IAC2 are reserved, since the address must be word aligned.

Errors
None.

Example

• Get the IAC2 register value:

iac1_value =ppcMfiac2();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-80 403 EVB User’s Manual

ppcMficcr()

ppcMficcr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMticcr(void);

Library
ppcLib.a

Description
ppcMticcr() returns the value of the Instruction Cache Cacheability
Register (ICCR).

Errors
None.

Example

• Get the ICCR value:

unsigned long iccr_value=ppcMficcr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-81

ppcMficdbdr()

ppcMficdbdr()

Synopsis
#include <ppcLib.h>

unsigned long = ppcMficdbdr(void);

Library
ppcLib.a

Description
ppcMficdbdr() returns the current value of the Instruction Cache Debug
Data Register (ICDBDR).

<ppcLib.h> has constants defined for use with the ICDBDR register.

Errors
None.

Example

• Retrieve the value of the ICDBDR:

unsigned long current_icdbdr = ppcMficdbdr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-82 403 EVB User’s Manual

ppcMfiocr()

ppcMfIocr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMiocr(void)

Library
ppcLib.a

Description
ppcMfiocr() returns the current value of the Input/Output Configuration
Register (IOCR). The file <ppcLib.h> contains several constants that can
be used when accessing the IOCR.

Errors
None.

Example

• Retrieve IOCR value:

unsigned long iocr_value;

iocr_value=ppcMfiocr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-83

ppcMfmsr()

ppcMfmsr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfmsr(void);

Library
ppcLib.a

Description
ppcMfmsr() returns the value of the Machine State Register(MSR).

Refer to the <ppc_arch.h> file for the defines of constants that can be
used as masks with the MSR value.

Errors
None.

Example
See ppcMtmsr() , p. 10-128.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-84 403 EVB User’s Manual

ppcMfpbl1() • ppcMfpbl2()

ppcMfpbl1() - ppcMfpbl2()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfpbl1(void);

unsigned long ppcMfpbl2(void);

Library
ppcLib.a

Description
ppcMfpbl1() and ppcMfpbl2() return the values of their respective
Protection Bound Lower Register (PBL).

Errors
None.

Example

• Get the current value of PBL2:

unsigned long pbl2_value= ppcMfpbl2();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-85

ppcMfpbu1() • ppcMfpbu2()

ppcMfpbu1() - ppcMfpbu2()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfpbu1(void);

unsigned long ppcMfpbu2(void);

Library
ppcLib.a

Description
ppcMfpbu1() and ppcMfpbu2() return the values of their respective
Protection Bound Upper Register (PBU).

Errors
None.

Example

• Get the current value of PBU2:

unsigned long pbu2_value= ppcMfpbu2();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-86 403 EVB User’s Manual

ppcMfpid()

ppcMfpid()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfpid(void);

Library
ppcLib.a

Description
ppcMfpid() returns the current value of the Process ID register (PID).

Errors
None.

Example

• Retrieve the current value of the PID.

#include <ppcLib.h>

unsigned long pid_value = ppcMfpid();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-87

ppcMfpit()

ppcMfpit()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfpit(void);

Library
ppcLib.a

Description
ppcMfpit() returns the value of the Programmable Interval Timer (PIT).

Errors
None.

Example

• Get the current PIT value:

unsigned long pit_value= ppcMfpit();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-88 403 EVB User’s Manual

ppcMfpvr()

ppcMfpvr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfpvr(void);

Library
ppcLib.a

Description
ppcMfpvr() returns the value of the processor version register, which
indicates the version and revision of the PowerPC processor.

Errors
None.

Example

• Retrieve the current value of the processor version register. Processor
version-specific code may require this value:

printf(“This is processor version %x\n”, ppcMfpvr());

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-89

ppcMfsgr()

ppcMfsgr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfsgr(void);

Library
ppcLib.a

Description
ppcMfsgr() returns the value of the Storage Guarded Register (SGR).

Errors
None.

Example

• Retrieve the current value of the SGR.

unsigned long current_sgr=ppcMfsgr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC401GF Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-90 403 EVB User’s Manual

ppcMfsprg0() - ppcMfsprg3()

ppcMfsprg0() - ppcMfsprg3()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfsprg0(void);

unsigned long ppcMfsprg1(void);

unsigned long ppcMfsprg2(void);

unsigned long ppcMfsprg3(void);

Library
ppcLib.a

Description
ppcMfsprg0() - ppcMfsprg3() returns the current value of the special
purpose register generals (SPRG0 - SPRG3).

Typically, the SPRGs provide temporary storage at the operating system
level.

NOTE: OS Open reserves these registers for its own use.

Errors
None.

Example

• Read value of SPRG0:

unsigned long sprg0_value = ppcMfsprg0();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-91

ppcMfsrr0()

ppcMfsrr0()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfsrr0(void);

Library
ppcLib.a

Description
ppcMfsrr0() returns the value of SRR0.

Typically, SRR0 is used in interrupt handlers, as it usually contains the
address of the next instruction to be executed at the time of the
interrupt.SRR0 and SRR1 are set for protection, external, alignment,
program, PIT, FIT, and syscall interrupts.

Errors
None.

Example

• Retrieve the current value of the SRR0. An exception handler may use
this value to determine the point of exception.

unsigned long current_srr0=ppcMfsrr0();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• ppcMfsrr1(), p. 10-93
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-92 403 EVB User’s Manual

ppcMfsrr1()

ppcMfsrr1()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfsrr1(void);

Library
ppcLib.a

Description
ppcMfsrr1() returns the current value of SRR1.

Typically, SRR1 is used in interrupt handlers, as it contains the old MSR
value as well as information bits specific to the interrupt. The
file<ppcLib.h> contains several constants that can be used when setting
the MSR values in the SRR1 register.

Errors
None.

Example

• Retrieve the current value of SRR1. This register contains the saved
MSR, which may be needed by an exception handler.

unsigned long current_srr1=ppcMfsrr1();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-93

ppcMfsrr2()

ppcMfsrr2()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfsrr2(void);

Library
ppcLib.a

Description
ppcMfsrr2() returns the current value of SRR2.

Typically, SRR2 is used in interrupt handlers, as it contains the address of
the next instruction which was to be executed next at the time the
exception occurred. SRR2 and SRR3 are set for critical, machine check,
watchdog, and debug interrupts.

Errors
None.

Example

• Retrieve the current value of SRR2. This register contains the address of
the instruction that was to be executed next, which may be needed by an
exception handler.

unsigned long current_srr2=ppcMfsrr2();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• ppcMfsrr3(), p. 10-95
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-94 403 EVB User’s Manual

ppcMfsrr3()

ppcMfsrr3()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfsrr3(void);

Library
ppcLib.a

Description
ppcMfsrr3() returns the current value of SRR3.

Typically, SRR3 is used in the critical interrupt handler, as it contains the
old MSR value as well as information bits specific to the interrupt. The file
<ppcLib.h> contains several constants that can be used when setting the
MSR values in the SRR3 register.

Errors
None.

Example

• Retrieve the current value of SRR3. This register contains the saved
MSR, which may be needed by an exception handler.

unsigned long current_srr3=ppcMfsrr3();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-95

ppcMftb()

ppcMftb()

Synopsis
#include <ppcLib.h>

void ppcMftb(tb_t *clock_data);

Library
ppcLib.a

Description
ppcMftb() returns the current time base data.

Typically, the time base registers are used to determine the number of
clock cycles that have passed.

Errors
None.

Example

• Retrieve the current value of time base high and low registers:

tb_t clock_data;

ppcMftb(&clock_data);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-96 403 EVB User’s Manual

ppcMftcr()

ppcMftcr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMftcr(void);

Library
ppcLib.a

Description
ppcMftcr() returns the value of the Timer Control Register.

File <ppcLIb.h> defines several constants for the TCR that can be used
as masks. :

Errors
None.

Example

• Retrieve the current value of TCR register:

unsigned long tcr_value;

tcr_value = ppcMftcr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-97

ppcMftlbhi()

ppcMftlbhi()

Synopsis
#include <ppcLib.h>

unsigned long ppcMftlbhi(unsigned long index);

Library
ppcLib.a

Description
ppcMftlbhi() returns the value of the high order bits of the Unified TLB
(UTLB) entry specified by the index parameter. The TLBHI contains the
tag portion of the UTLB. The TID[0:7] value is placed into the PID. A
ppcMfpid() may be used to acquire the TID value. ppcMftlbhi () returned
value contains the following data format:

Errors
None.

Example

• Retrieve the current TLBHI value for entry 1.

unsigned long current_tlbhi_1=ppcMftlbhi(1);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-98 403 EVB User’s Manual

ppcMftlblo()

ppcMftlblo()

Synopsis
#include <ppcLib.h>

unsigned long ppcMftlblo(unsigned long index);

Library
ppcLib.a

Description
ppcMftlblo() returns the value of the low order bits of the Unified TLB
(UTLB) entry specified by the index parameter. The TLBLO contains the
data entry portion of the UTLB. ppcMftlblo () returned value contains the
following data format:

Errors
None.

Example

• Retrieve the current TLBLO value for entry 1.

unsigned long current_tlblo_1=ppcMtlblo(1);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-99

ppcMftsr()

ppcMftsr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMftsr(void);

Library
ppcLib.a

Description
ppcMftsr() returns the current value of the Timer Status Register (TSR).
The file <ppcLib.h> contains several defined constants for the TSR that
can be used as masks.

Errors
None.

Example

• Retrieve the current value of the TSR:

unsigned long tsr_value;

tsr_value = ppcMftsr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-100 403 EVB User’s Manual

ppcMfutb()

ppcMfutb()

Synopsis
#include <ppcLib.h>

void ppcMfutb(tb_t *clock_data);

Library
ppcLib.a

Description
ppcMfutb() returns the current value of the User-Mode Time Base(UTB).
The value of the UTB will be placed into the tb_t structure clock_data.

Errors
None.

Example

• Retrieve the current value of the UTB.

#include <ppcLib.h>

tb_t clock_data;

tb_t * tb_ptr;

tb_ptr=&clock_data;

void ppcMfutb(tb_ptr);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-101

ppcMfzpr()

ppcMfzpr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMfzpr(void);

Library
ppcLib.a

Description
ppcMfzpr() returns the current value of the ZPR.

Errors
None.

Example

• Set the ZP bits for zone 0 to allow all access if valid.

#include <ppcLib.h>

unsigned long zpr_value;

zpr_value=ppcMfzpr();

ppcMtzpr(zpr_value | 0xc0000000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-102 403 EVB User’s Manual

ppcMtbesr()

ppcMtbesr()

Synopsis
#include <ppcLib.h>

void ppcMtbesr(unsigned long besr_value);

Library
ppcLib.a

Description
ppcMtbesr() sets the value of the Bus Error Syndrome Register, which
identifies the nature of a bus error detected by the processor.

The file <ppcLib.h> defines constants for use with the BESR.

Errors
None.

Example

• Clear bus error syndrome information.

ppcMfbesr(0x0);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• ppcMfbear(), p. 10-54
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-103

ppcMtbr0() • ppcMtbr7()

ppcMtbr0() - ppcMtbr7()

Synopsis
#include <ppcLib.h>

void ppcMtbr0(unsigned long br0_value);

void ppcMtbr1(unsigned long br1_value);

void ppcMtbr2(unsigned long br2_value);

void ppcMtbr3(unsigned long br3_value);

void ppcMtbr4(unsigned long br4_value);

void ppcMtbr5(unsigned long br5_value);

void ppcMtbr6(unsigned long br6_value);

void ppcMtbr7(unsigned long br7_value);

Library
ppcLib.a

Description
ppcMtbr0() - ppcMtbr7() set the respective bank registers with the
specified value. Four bank registers (BR0 through BR3) control SRAM
devices only; four bank registers (BR4 through BR7) control SRAM or
DRAM devices. The file <ppcLIb.h> contains several constants that can
be used when modifying the BR registers.:

Errors
None.

Example

• Set the BR4 with a base address of 0x0 a bank size of 4 MB, for read
only, and a 16 bit bus width:

ppcMtbr4(BR_SIZE_4M | BR_BU_RO | BR_BW_16);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes
10-104 403 EVB User’s Manual

ppcMtbr0() • ppcMtbr7()
References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-105

ppcMtbrh0() • ppcMtbrh7()

ppcMtbrh0() - ppcMtbrh7()

Synopsis
#include <ppcLib.h>

void ppcMtbrh0(unsigned long brh0_value);

void ppcMtbrh1(unsigned long brh1_value);

void ppcMtbrh2(unsigned long brh2_value);

void ppcMtbrh3(unsigned long brh3_value);

void ppcMtbrh4(unsigned long brh4_value);

void ppcMtbrh5(unsigned long brh5_value);

void ppcMtbrh6(unsigned long brh6_value);

void ppcMtbrh7(unsigned long brh7_value);

Library
ppcLib.a

Description
ppcMtbrh0() - ppcMtbrh7() set the respective BRH (BRH0 - BRH7) with
the specified value.

Errors
None.

Example

• Set the BRH4 to 0x80000000:

ppcMtbrh4(0x80000000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC No
PowerPC 403GCX Yes

References
• PPC403GCX Embedded Controller User’s Manual
10-106 403 EVB User’s Manual

ppcMtcdbcr()

ppcMtcdbcr()

Synopsis
#include <ppcLib.h>

void ppcMtcdbcr(unsigned long cdbcr_value);

Library
ppcLib.a

Description
ppcMtcdbcr() sets the CDBCR to the specified value.

<ppcLib.h> has constants defined for use with the Cache Debug Control
Register (CDBCR) registers.

Errors
None.

Example

• Set value of the CDBCR:

#include<ppcLib.h>

ppcMtcdbcr(CDBCR_CIS);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-107

ppcMtdac1()

ppcMtdac1()

Synopsis
#include <ppcLib.h>

void ppcMfdac1(unsigned long dac1_value);

Library
ppcLib.a

Description
ppMfdac1() sets the value of the appropriate Data Address Compare
register. the DAC1 register contains addresses for which debug events
may be taken, depending on the values set in the DBCR.

Errors
None.

Example

• Set the value of DAC1to address 0x0.

ppcMfdac1(0x0);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-108 403 EVB User’s Manual

ppcMtdac2()

ppcMtdac2()

Synopsis
#include <ppcLib.h>

void ppcMfdac2(unsigned long dac1_value);

Library
ppcLib.a

Description
ppMfdac2() sets the value of the appropriate Data Address Compare
register. the DAC2 register contains addresses for which debug events
may be taken, depending on the values set in the DBCR.

Errors
None.

Example

• Set the value of DAC2 to address 0x0.

ppcMfdac2(0x0);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-109

ppcMtdbcr()

ppcMtdbcr()

Synopsis
#include <ppcLib.h>

void ppcMtdbcr(unsigned long dbcr_value);

Library
ppcLib.a

Description
ppcMtdbcr() sets the value of the debug control register (DBCR) to the
specified value. The DBCR is used to enable debug events, reset the
processor, control timer operations during debug events, and set the
debug mode of the processor.

WARNING: Enabling bits 0 and 1 can cause unexpected results. Enabling
bits 2 and 3 will cause a processor reset to occur. The DBCR is designed
to be used by development tools, not applications.

File <ppcLib.h> has several defined constants for the DBCR.

Errors
None.

Example

• Enable external debug mode:

ppcMtdbcr(DBCR_EDM);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-110 403 EVB User’s Manual

ppcMtdbsr()

ppcMtdbsr()

Synopsis
#include <ppcLib.h>

void ppcMtdbsr(unsigned long dbsr_value);

Library
ppcLib.a

Description
ppcMtdbsr() sets the value of the debug status register (DBSR) to the
specified value. The DBSR contains the status of debug events, the JTAG
serial buffers, and the most recent reset. Bits in the DBSR are cleared by
writing a 1 to the corresponding bit position.

WARNING: The DBSR is designed to be used by development tools, not
application software. It is strongly recommended that this register be
treated as a read only register.

The file <ppcLib.h> defines constant values that can be used when
setting DBSR

Errors
None.

Example

• Set the system reset bits:

ppcMtdbsr(DBSR_MRR_SYS);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-111

ppcMtdccr()

ppcMtdccr()

Synopsis
#include <ppcLib.h>

unsigned long ppcMtdccr(void);

Library
ppcLib.a

Description
ppcMtdccr() sets the value of Data Cache Cacheability Register (DCCR).

Errors
None.

Example

• Set the value of the DCCR so all regions are cacheable:

#include<ppcLib.h>

ppcMfdccr(0xffffffff);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-112 403 EVB User’s Manual

ppcMtdcwr()

ppcMtdcwr()

Synopsis
#include <ppcLib.h>

void ppcMtdcwr(unsigned long dcwr_value);

Library
ppcLib.a

Description
ppcMtdcwr() sets the Data Cache Write-thru Register (DCWR) to the
specified value.

Errors
None.

Example

• Set the value of the DCWR:

#include<ppcLib.h>

ppcMtdcwr(0x80000000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-113

ppcMtdmacc0() • ppcMtdmacc3()

ppcMtdmacc0() - ppcMtdmacc3()

Synopsis
#include <ppcLib.h>

void ppcMtdmacc0(unsigned long dmacc0_value);

void ppcMtdmacc1(unsigned long dmacc1_value);

void ppcMtdmacc2(unsigned long dmacc2_value);

void ppcMtdmacc3(unsigned long dmacc3_value);

Library
ppcLib.a

Description
ppcMtdmacc0() sets the value of the DMA chained count register
(DMACC0 - DMACC3). The count value is in bits 16 to 31. Bits 0 to 15 are
reserved. The count value is the number of transfer in the next DMA
transaction for the corresponding channel. When chaining is disabled for
the corresponding channel the DMACC register is not used.

Note: ppcMtdmacc1() thru ppcMtdmacc3() are only valid for 403GA
processors with module markings of PPC 403GA-JB.... and beyond and all
403GC processors.

Errors
None.

Example

• Set the chain count for the next DMA transaction to 0x00000000:

ppcMtdmacc0(0x00000000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-114 403 EVB User’s Manual

ppcMtdmacr0() • ppcMtdmacr3()

ppcMtdmacr0() - ppcMtdmacr3()

Synopsis
#include <ppcLib.h>

void ppcMtdmacr0(unsigned long dmacr0_value);

void ppcMtdmacr1(unsigned long dmacr1_value);

void ppcMtdmacr2(unsigned long dmacr2_value);

void ppcMtdmacr3(unsigned long dmacr3_value);

Library
ppcLib.a

Description
ppcMtdmacr0() - ppcMtdmacr3() set the value of the DMA Channel
Control Registers (DMACR0 - DMACR3). Prior to executing DMA
transfers, the control register must be initialized and enabled. The file
<ppcLib.h> contains several constants that may be used when accessing
the DMACR’s. :

Errors
None.

Example

• Disable channel 2:

ppcMtdmacr2(~DMACR_CE);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-115

ppcMtdmact0() • ppcMtdmact3()

ppcMtdmact0() - ppcMtdmact3()

Synopsis
#include <ppcLib.h>

void ppcMtdmact0(unsigned long dmact0_value);

void ppcMtdmact1(unsigned long dmact1_value);

void ppcMtdmact2(unsigned long dmact2_value);

void ppcMtdmact3(unsigned long dmact3_value);

Library
ppcLib.a

Description
ppcMtdmact0() - ppcMtdmact3() set the values of the DMA count
registers (DMACT0 - DMACT3) to the specified value. The DMACTs
contain the number of transfers left in a DMA transaction for the channel.
The maximum number of transfers is 64K and each transfer can be 1, 2, or
4 bytes as programmed in the DMA Channel Control

Errors
None.

Example

• Set the DMACT0 for 64K transfers by setting the DMACT0 to 0:

ppcMtdmact0(0x00000000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-116 403 EVB User’s Manual

ppcMtdmada0() • ppcMtdmada3()

ppcMtdmada0() - ppcMtdmada3()

Synopsis
#include <ppcLib.h>

void ppcMtdmada0(unsigned long dmada0_value);

void ppcMtdmada1(unsigned long dmada1_value);

void ppcMtdmada2(unsigned long dmada2_value);

void ppcMtdmada3(unsigned long dmada3_value);

Library
ppcLib.a

Description
ppcMtdmada0() - ppcMtdmada3() set the values of the DMA destination
address registers (DMADA0 - DMADA3) to the specified value. The DMAD
registers contains the memory address for transfers between memory and
peripheral or the destination address for memory to memory transfers.

Errors
None.

Example

• Set the address for a memory -to-memory transfer:

ppcMtdmasa0(0x00020000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-117

ppcMtdmasa0() • ppcMtdmasa3()

ppcMtdmasa0() - ppcMtdmasa3()

Synopsis
#include <ppcLib.h>

void ppcMtdmasa0(unsigned long dmasa0_value);

void ppcMtdmasa1(unsigned long dmasa1_value);

void ppcMtdmasa2(unsigned long dmasa2_value);

void ppcMtdmasa3(unsigned long dmasa3_value);

Library
ppcLib.a

Description
ppcMtdmasa0() - ppcMtdmasa3() set the value of the DMA
source/chained address registers (DMASA0 - DMASA3). The DMASA
registers are only used in memory-to-memory move mode for any channel
or when chaining has been enabled in buffered or fly-by mode for channel
0.

Errors
None.

Example

• Set the address for a memory -to-memory transfer:

ppcMtdmasa0(0x00020000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-118 403 EVB User’s Manual

ppcMtdmasr()

ppcMtdmasr()

Synopsis
#include <ppcLib.h>

void ppcMtdmasr(unsigned long dec_value);

Library
ppcLib.a

Description
ppcMtdmasr() sets the value of the DMA Status Register (DMASR). Bits
in the DMASR may be cleared by writing a 1 to the corresponding bit
position. The file <ppcLib.h> contains several constants that may be used
when accessing the DMASR.

Errors
None.

Example

• Set all status bits for channel 3:

ppcMtdmasr(DMASR_ALL3);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-119

ppcMtesr()

ppcMtesr()

Synopsis
#include <ppcLib.h>

void ppcMtesr(unsigned long esr_value);

Library
ppcLib.a

Description
ppcMtesr() sets the value of the Exception Syndrome Register (ESR) to
the specified value. Bits 7 to 31 are reserved.

Errors
None.

Example

• Set the all exception s off:

ppcMtesr(0x0);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-120 403 EVB User’s Manual

ppcMtevpr()

ppcMtevpr()

Synopsis
#include <ppcLib.h>

void ppcMtevpr(unsigned long evpr_value);

Library
ppcLib.a

Description
ppcMtevpr() sets the value of the exception vector prefix register (EVPR).
Bits 0 to 15 contain the prefix of the address of the exception processing
routines. Bits 15 to 31 are reserved.

WARNING: Do not use ppcMtevpr() if using OS Open services that use
interrupts, ethernet, or SL/IP etc...

Errors
None.

Example

• Set the EVPR to 0x00A00000:

ppcMtevpr(0x00A00000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-121

ppcMtexier()

ppcMtexier()

Synopsis
#include <ppcLib.h>

void ppcMtexier(unsigned long exier_value);

Library
ppcLib.a

Description
ppcMtexier() sets the value of the external interrupt enable register
(EXIER). The EXIER contains the enable bits for six external interrupts,
the DMA channel interrupts, the JTAG serial port interrupts, and the serial
port interrupts. Bits in the EXIER may be cleared by writing a 1 to the
corresponding bit position.The file <ppcLib.h> contains several constants
that can be used when accessing the EXIER.

Errors
None.

Example

• Enable DMA channel 0 external interrupts:

unsigned long exier_value=ppcMfexier();

(void) ppcMtexier(exier_value|EXIER_D0IE); /* enable DMA chan. 0
interrupts*/

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-122 403 EVB User’s Manual

ppcMtexisr()

ppcMtexisr()

Synopsis
#include <ppcLib.h>

void ppcMtexisr(unsigned long exisr_value);

Library
ppcLib.a

Description
ppcMtexisr() sets the value of the external interrupt status register
(EXISR). The EXISR contains the status of the five external hardware
interrupts, the DMA channel interrupts, the JTAG serial port interrupts and
the serial port interrupts.

External hardware interrupts are enabled via the External Interrupt Enable
Register (EXIER). The DMA channel interrupts, the JTAG serial port
interrupts and the serial port interrupts may be enabled via the EXIER and
must be enabled by the interrupt enable bits in their respective control
registers. The file <ppcLib.h> contains several constants that can be used
when accessing the EXISR.

Errors
None.

Example

• Set the external interrupt 0 pending bit on:

ppcMtexisr(EXISR_E0IS_PEND);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-123

ppcMtiac1()

ppcMtiac1()

Synopsis
#include <ppcLib.h>

void ppcMtiac1(unsigned long iac1_value);

Library
ppcLib.a

Description
ppcMtiac1r() sets the value of the instruction address compare register 1
(IAC1). The IAC1 contains the address of the instruction that the debug
event will be based on. The IA1 field of the Debug Control Register
(DBCR) controls the instruction address 1 debug event. Bits 30 and 31 of
the IAC1 are reserved, since the address must be word aligned.

Errors
None.

Example

• Set the IAC1 register to 0x1000:

ppcMtiac1(0x00001000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-124 403 EVB User’s Manual

ppcMtiac2()

ppcMtiac2()

Synopsis
#include <ppcLib.h>

void ppcMtiac2(unsigned long iac2_value);

Library
ppcLib.a

Description
ppcMtiac2() sets the value of the instruction address compare register 2
(IAC2). The IAC2 contains the address of the instruction that the debug
event will be based on. The IA2 field of the Debug Control Register
(DBCR) controls the instruction address 2 debug event. Bits 30 and 31 of
the IAC2 are reserved, since the address must be word aligned.

Errors
None.

Example

• Set the IAC2 register to 0x1000:

ppcMtiac2(0x00001000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-125

ppcMticcr()

ppcMticcr()

Synopsis
#include <ppcLib.h>

void ppcMticcr(unsigned long iccr_value);

Library
ppcLib.a

Description
ppcMticcr() sets the value of the instruction cache cacheability register
(ICCR) to the specified value.

Errors
None.

Example

• Set the ICCR register to 0’s, making no regions of memory cacheable:

ppcMticcr(0x00000000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-126 403 EVB User’s Manual

ppcMtiocr()

ppcMtiocr()

Synopsis
#include <ppcLib.h>

void ppcMtiocr(unsigned long iocr_value);

Library
ppcLib.a

Description
ppcMtiocr() sets the input/output configuration register (IOCR) to the
specified value. ppcMtiocr() allows the user to program some of the
external multifunctional pins in the PPC403GA and PPC403GC
processors. The file <ppcLib.h> contains several constants that can be
used when accessing the IOCR.

Errors
None.

Example

• Allow external interrupt 0 triggering to be edge triggered:

ppcMtiocr(IOCR_E0T_EDGE);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-127

ppcMtmsr()

ppcMtmsr()

Synopsis
#include <ppcLib.h>

void ppcMtmsr(unsigned long msr_value);

Library
ppcLib.a

Description
ppcMtmsr() sets the MSR to msr_value.

The file <ppc_arch.h> defines constants that can be use with the MSR:

Errors
None.

Example

• Enable external interrupts:

unsigned long msr = ppcMfmsr();
ppcMtmsr(msr | ppcMsrEE);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-128 403 EVB User’s Manual

ppcMtpbl1() • ppcMtpbl2()

ppcMtpbl1() - ppcMtpbl2()

Synopsis
#include <ppcLib.h>

void ppcMtpbl1(unsigned long pbl1_value);

void ppcMtpbl2(unsigned long pbl2_value);

Library
ppcLib.a

Description
ppcMtpbl1() and ppcMtpbl2() sets the values of their respective
Protection Bound Lower Register (PBL). Bits 20 to 31 are reserved.

Errors
None.

Example

• Set the current value of PBL2:

ppcMtpbl2(0x0000f000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-129

ppcMtpbu1() • ppcMtpbu2()

ppcMtpbu1() - ppcMtpbu2()

Synopsis
#include <ppcLib.h>

void ppcMtpbu1(unsigned long pbu1_value);

void ppcMtpbu2(unsigned long pbu2_value);

Library
ppcLib.a

Description
ppcMtpbu1() and ppcMtpbu2() sets the values of their respective
Protection Bound Upper Register (PBU). Bits 20 to 31 are reserved.

Errors
None.

Example

• Set the current value of PBU2:

ppcMtpbu2(0x00010000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-130 403 EVB User’s Manual

ppcMtpid()

ppcMtpid()

Synopsis
#include <ppcLib.h>

void pcMtpid(unsigned long pid_value);

Library
ppcLib.a

Description
ppcMtpid() sets the PID to the specified value.

Errors
None.

Example

• Set the value of the PID.

#include <ppcLib.h>

unsigned long pid_value = 0x00000020;

void ppcMtpid(pid_value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-131

ppcMtpit()

ppcMtpit()

Synopsis
#include <ppcLib.h>

void ppcMtpit(unsigned long pit_value);

Library
ppcLib.a

Description
ppcMtpit() sets the programmable interval timer (PIT) to the specified
value.

Errors
None.

Example

• Set the PIT to a non-0 value, to cause the PIT to start decrementing:

ppcMtpit(0x00000001);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-132 403 EVB User’s Manual

ppcMtsgr()

ppcMtsgr()

Synopsis
#include <ppcLib.h>

void ppcMtsgr(unsigned long);

Library
ppcLib.a

Description
ppcMtsgr() sets the value of the Storage Guarded Register (SGR) to the
specified value.

Errors
None.

Example

• Set the value of the SGR.

#include <ppcLib.h>

ppcMtsgr(0x80000000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-133

ppcMtsprg0() - ppcMtsprg3()

ppcMtsprg0() - ppcMtsprg3()

Synopsis
#include <ppcLib.h>

void ppcMtsprg0(unsigned long data);

void ppcMtsprg1(unsigned long data);

void ppcMtsprg2(unsigned long data);

void ppcMtsprg3(unsigned long data);

Library
ppcLib.a

Description
ppcMtsprg0() - ppcMtsprg3() set the special purpose register generals
(SPRG0 - SPRG3) to the specified values.

Typically, the SPRGs provide temporary storage at the operating system
level.

NOTE: OS Open reserves these registers for its own use.

Errors
None.

Example

• Set SPRG0 to 0xA0000000:

ppcMtsprg0(0xA0000000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-134 403 EVB User’s Manual

ppcMtsrr0()

ppcMtsrr0()

Synopsis
#include <ppcLib.h>

void ppcMtsrr0(unsigned long srr0_value);

Library
ppcLib.a

Description
ppcMtsrr0() sets the SRR0 to srr0_value.

Errors
None.

Example

• Set the save/restore register 0 to X'DF000000':

ppcMtsrr0(0xDF000000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-135

ppcMtsrr1()

ppcMtsrr1()

Synopsis
#include <ppcLib.h>

void ppcMtsrr1(unsigned long srr1_value);

Library
ppcLib.a

Description
ppcMtsrr1() sets the SRR1 to srr1_value. The file <ppcLib.h> contains
several constants that can be used when accessing the MSR values in the
SRR1 register.

Errors
None.

Example

• Set the save/restore register 1 to X'0000BB00':

ppcMtsrr1(0x0000BB00);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-136 403 EVB User’s Manual

ppcMtsrr2()

ppcMtsrr2()

Synopsis
#include <ppcLib.h>

void ppcMtsrr2(unsigned long srr2_value);

Library
ppcLib.a

Description
ppcMtsrr2() sets the SRR2 to srr2_value.

Errors
None.

Example
Set the save/restore register 2 to X'0000BB00':

ppcMtsrr2(0x0000BB00);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-137

ppcMtsrr3()

ppcMtsrr3()

Synopsis
#include <ppcLib.h>

void ppcMtsrr3(unsigned long srr3_value);

Library
ppcLib.a

Description
ppcMtsrr3() sets the SRR3 to srr3_value. The file <ppcLib.h> contains
several constants that can be used when setting the MSR values in the
SRR3 register.

Errors
None.

Example
Set the save/restore register 3 to problem state (ppcMsrPR):

ppcMtsrr3(ppcMsrPR);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-138 403 EVB User’s Manual

ppcMttb()

ppcMttb()

Synopsis
#include <ppcLib.h>

void ppcMttb(tb_t *clock_data);

Library
ppcLib.a

Description
ppcMttb() sets the current time base data.

Typically, the time base registers are used to determine the number of
clock cycles that have passed.

Errors
None.

Example

• Set the current value of time base high and low registers:

tb_t clock_data;

ppcMttb(0x00000000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 603GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-139

ppcMttcr()

ppcMttcr()

Synopsis
#include <ppcLib.h>

void ppcMttcr(unsigned long tcr_value);

Library
ppcLib.a

Description
ppcMttcr() sets the timer control register to the specified value.

The WRC bits of the TCR 3 may only be set once, and will be reset by any
form of processor reset. File <ppcLib.h> defines several constants for the
TCR that can be used as masks.

Errors
None.

Example

• Set the TCR to force a system reset:

ppcMttcr(TCR_WD_SYS);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-140 403 EVB User’s Manual

ppcMttlbhi()

ppcMttlbhi()

Synopsis
#include <ppcLib.h>

void ppcMttlbhi(unsigned long data, unsigned long index);

Library
ppcLib.a

Description
ppcMttlbhi() sets the value of the high order bits of the Unified TLB
(UTLB) entry specified by the index parameter. The TLBHI contains the
tag portion of the UTLB. The data parameter for ppcMttlbhi() contains the
following fields.

Errors
None.

Example

• Set the valid bit for entry 1 in the UTLB.

unsigned long current_tlbhi_1=ppcMftlbhi(1);

ppcMttlbhi(current_tlbhi_1| 0x00000040,1);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual

EPN[0:21] Data value[0:21]

SIZE[0:2] Data value[22:24]

Valid bit Data value[25]

Reserved Data value[26:31]
403 EVB Function Reference 10-141

ppcMttlblo()

ppcMttlblo()

Synopsis
#include <ppcLib.h>

void ppcMttlblo(unsigned long data, unsigned long index);

Library
ppcLib.a

Description
ppcMttlblo() sets the value of the low order bits of the Unified TLB (UTLB)
entry specified by the index parameter. The TLBLO contains the data entry
portion of the UTLB.

Errors
None.

Example

• Set the TLBLO value of the write-through bit (WT) to a 1 for entry 2.

unsigned long current_tlblo_1=ppcMftlblo(2);

ppcMttblo(current_tlblo_1|0x00000100, 2);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual

PRN[0:21] Data value[0:21]

EX, WR Data value[22:23]

ZSEL[0:3] Data value[24:27]

WIMG Data value[28:31]
10-142 403 EVB User’s Manual

ppcMttsr()

ppcMttsr()

Synopsis
#include <ppcLib.h>

void ppcMttsr(unsigned long tsr_value);

Library
ppcLib.a

Description
ppcMttsr() sets the timer status register to the specified value. Bits in the
TSR may be cleared by writing a 1 to the corresponding bit position.The
file <ppcLib.h> defines several constants for the TSR that can be used as
masks.

Errors
None.

Example
Reset the watchdog interrupt status in the TSR register:

ppcMttsr(TSR_WIS);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-143

ppcMtzpr()

ppcMtzpr()

Synopsis
#include <ppcLib.h>

void ppcMtzpr(unsigned long);

Library
ppcLib.a

Description
ppcMtzpr() sets the Zone Protection Register (ZPR) to the specified value.

Errors
None.

Example

• Set the ZP bits for zone 0 to allow all access if valid.

#include <ppcLib.h>

unsigned long zpr_value;

zpr_value=ppcMfzpr();

ppcMtzpr(zpr_value | 0xc0000000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-144 403 EVB User’s Manual

ppcOrMsr()

ppcOrMsr()

Synopsis
#include <ppcLib.h>

unsigned long ppcOrMsr(unsigned long value);

Library
ppcLib.a

Description
ppcOrMsr() performs the OR of value and the current MSR, updating the
MSR.

The previous value of the MSR is returned.

The file <ppcLib.h> defines several constants for the MSR that can be
used as masks:

Errors
None.

Example
Enable debug exceptions:

unsigned long old_val = ppcOrMsr(ppcMsrDE);

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-145

ppcSync()

ppcSync()

Synopsis
#include <ppcLib.h>

void ppcSync(void);

Library
ppcLib.a

Description
ppcSync() causes the processor to wait until all data cache lines
scheduled to be written to main storage have actually been written.

Errors
None.

Example

• Ensure a ppcDbci() completes before using the values:

char *memptr = (char *)0x2000;
char new_value;
ppcDcbi((void *)memptr)
ppcSync();
new_value = *memptr;

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-146 403 EVB User’s Manual

ppcTlbia()

ppcTlbia()

Synopsis
#include <ppcLib.h>

void ppcTlbia(void);

Library
ppcLib.a

Description
ppcTlbia() invalidates all entries in the TLB. All TLB fields in the TLB
entries are unmodified, except for the valid(V) bit.

Errors
None.

Example

• Invalidate all entries in the TLB.

#include <ppcLib.h>

ppcTlbia();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-147

ppcTlbsx()

ppcTlbsx()

Synopsis
#include <ppcLib.h>

unsigned long ppcTlbsx(unsigned long eff_addr);

Library
ppcLib.a

Description
ppcTlbsx() searches for a valid TLB entry for the specified effective
address. eff_addr is passed in and a search of the TLB is performed in the
same fashion as for a normal load/store instruction. If the search is
successful ppcTlbsx() returns the TLB entry index otherwise ppcTlbsx()
returns a -1.

Errors
None.

Example

• Search for the TLB entry for an effective address of 0xa000.

#include <ppcLib.h>

unsigned long tlb_entry_index=ppcTlbsx(0xa000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA No
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-148 403 EVB User’s Manual

processor_speed()

processor_speed()

Synopsis
#include <tickLib.h>

unsigned long processor_speed(void);

Library
tickLib.a

Description
processor_speed() returns the internal clock speed of the 403 processor.

Errors
None.

Example

• Return the the internal processor clock speed.

#include <tickLib.h>

unsigned long proc_speed=processor_speed();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-149

s1dbprintf()

s1dbprintf()

Synopsis
#include <sys/asyncLib.h>

int s1dbprintf(unsigned long uart_clock, int iocr_reg,const char
*format,...);

Library
asyncLib.a

Description
s1dbprintf() is a version of printf() that uses polled writes (no interrupts),
and may be used before I/O has been established. s1dbprintf() may be
called before the async device driver is installed. uart_clock is the clock
frequency of the serial port. iocr_reg is the value of the IOCR register bits.
Refer to the IOCR register in the PPC403GA and PPC403GC User’s
Manuals. For the 403 EVB, uart_clock must be 7372800.

Errors
None.

Example

• Print “Hello World” before I/O has been initialized:

#include <sys/asyncLib.h>
#define SCLK 7372800

s1dbprintf(SCLK,2,”Hello World\n\r”);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-150 403 EVB User’s Manual

s1dbprintfapp()

s1dbprintfapp()

Synopsis
#include <sys/asyncLib.h>

int s1dbprintf(unsigned long uart_clock, int iocr_reg, const char
*format,...);

Library
asyncLib.a

Description
s1dbprintfapp() is a version of printf() that uses polled writes (no
interrupts), and may be used before I/O has been established.
s1dbprintfapp() may be called before the async device driver is installed.
uart_clock is the clock frequency of the serial port. iocr_reg is the value
of the IOCR register bits. Refer to the IOCR register in the PPC403GA and
PPC403GC User’s Manuals. For the 403 EVB, uart_clock must be
7372800. s1dbprintfapp() may be called from an application thread
group.

Note: s1dbprintfapp() is only available with OS Open with Virtual
Memory.

Errors
None.

Example
Print “Hello World” using polled mode:

#include <sys/asyncLib.h>
#define SCLK 7372800
s1dbprintf(SCLK,2,”Hello World\n\r”);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes
403 EVB Function Reference 10-151

s1dbprintfapp()
References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-152 403 EVB User’s Manual

s2dbprintf()

s2dbprintf()

Synopsis
#include <sys/asyncLib.h>

int s2dbprintf(unsigned long uart_clock, int iocr_reg,const char
*format,...);

Library
asyncLib.a

Description
s2dbprintf() is a version of printf() that uses polled writes (no interrupts),
and may be used before I/O has been established. s2dbprintf() may be
called before the async device driver is installed. uart_clock is the clock
frequency of the serial port.iocr_reg is the value of the IOCR register bits.
Refer to the IOCR register in the PPC403GA and PPC403GC User’s
Manuals. For the 403 EVB, uart_clock must be 7372800.

Errors
None.

Example

• Print “Hello World” before I/O has been initialized:

#include <sys/asyncLib.h>
#define SCLK 7372800

s2dbprintf(SCLK,2,”Hello World\n\r”);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-153

s2dbprintfapp()

s2dbprintfapp()

Synopsis
#include <sys/asyncLib.h>

int s2dbprintf(unsigned long uart_clock, int iocr_reg, const char
*format,...);

Library
asyncLib.a

Description
s2dbprintfapp() is a version of printf() that uses polled writes (no
interrupts), and may be used before I/O has been established.
s2dbprintfapp() may be called before the async device driver is installed.
uart_clock is the clock frequency of the serial port. iocr_reg is the value
of the IOCR register bits. Refer to the IOCR register in the PPC403GA and
PPC403GC User’s Manuals. For the 403 EVB, uart_clock must be
7372800. s2dbprintfapp() may be called from an application thread
group.

Note: s2dbprintfapp() is only available with OS Open with Virtual
Memory.

Errors
None.

Example
Print “Hello World” using polled mode:

#include <sys/asyncLib.h>
#define SCLK 7372800
s1dbprintf(SCLK,2,”Hello World\n\r”);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes
10-154 403 EVB User’s Manual

s2dbprintfapp()
References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
403 EVB Function Reference 10-155

timertick_install()

timertick_install()

Synopsis
#include <tickLib.h>

int timertick_install(void);

Library
tickLib.a

Description
timertick_install() installs and starts the timer tick handler to maintain
time-of-day in the OS Open real-time executive.

Errors
[ENOMEM] Insufficient memory to install the timer tick handler.

Example
Do a timertick_install() for a 403GA, 403GC, 403GCX processor.

timertick_install();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• timertick_remove(), p. 10-157
10-156 403 EVB User’s Manual

timertick_remove()

timertick_remove()

Synopsis
#include <tickLib.h>

int timertick_remove(void);

Library
tickLib.a

Description
timertick_remove() removes the timer tick handler installed by
timertick_install() .

Errors
[EINVAL] Internal error involving tick handler level.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• timertick_install(), p. 10-156
403 EVB Function Reference 10-157

vs1dbprintf()

vs1dbprintf()

Synopsis
#include <sys/asyncLib.h>

int vs1dbprintf(unsigned long uart_clock, int iocr_reg,const char
*format,va_list arg_list);

Library
asyncLib.a

Description
vs1dbprintf() is a version of printf() that uses polled writes (no interrupts),
and may be used before I/O has been established and accepts a va_list as
a parameter instead of a variable number of parameters. vs1dbprintf()
may be called before the async device driver is installed. uart_clock is the
clock frequency of the serial port. Iocr_reg is the value of the IOCR
register bits. Refer to the IOCR register in the PPC403GA and PPC403GC
User’s Manuals. For the 403 EVB, uart_clock must be 7372800.

Errors
None.

Example

• Print “Hello World” before I/O has been initialized:

#include <sys/asyncLib.h>
#define SCLK7372800

vs1dbprintf(SCLK,2,”Hello World\n\r”);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes

References
• PPC403GA Embedded Controller User’s Manual
• PPC403GC Embedded Controller User’s Manual
• PPC403GCX Embedded Controller User’s Manual
10-158 403 EVB User’s Manual

A
Programmable Logic Equations

This appendix presents the logic equations programmed into the interface state machines
and other control logic.

TITLE PPC403 Evaluation Card PAL

CHIP _403eval MACH210

;----------------------- PIN Declarations ---------------------

PIN 35 clk2x ; 2X system clock
PIN 27 sysclk reg ; 403 processor clock

PIN 20 rw ; r/w*
PIN 39 xcvr_en ; data transceiver enable input

PIN 41 xcvr_dir comb ; data transceiver direction output
PIN 26 xcvr_oe comb ; data transceiver output enable

PIN 13 reset_in ; reset* input
PIN 42 reset comb ; active high reset output

PIN 19 ready_in ; ready input
PIN 21 ready comb ; synchronized ready output to 403

PIN 18 oe ; 403 oe
PIN 17 wbe0 ; 403 byte wide peripheral write line
PIN 10 ethernet ; 403 ethernet chip select line
PIN 16 a26 ; 403 address line
PIN 15 a27 ; 403 address line

PIN 14 ack ; ethernet controller synchronized
PIN 38 prq ; ethernet host processor request
PIN 33 prd ; ethernet latched data read

PIN 9 ethernetcs comb ; fully decoded ethernet chip select
PIN 3 rack comb ; ethernet remote dma read acknowledge
Programmable Logic Equations A-1

PIN 5 wack comb ; ethernet remote dma write acknowledge
PIN 4 g comb ; ethernet data transceiver enable
PIN 6 edir comb ; ethernet data transceiver direction
PIN 8 sab comb ; select 403 -> ethernet
PIN 7 sba comb ; select ethernet -> 403

PIN 2 d7 comb ; 403 data line

PIN 37 rx ; receive data
PIN 36 tx ; transmit data
PIN 32 col ; packet collision

PIN 43 rx_led comb ; receive data LED
PIN 24 tx_led comb ; transmit data LED
PIN 40 col_led comb ; packet collision LED

NODE ? a ; ready logic buried node (d-ff)
NODE ? b ; ready logic buried node (d-ff)
NODE ? e ; ready logic buried node (d-ff)
NODE ? f ; ready logic buried node (d-ff)
NODE ? h ; ready logic buried node (d-ff)
NODE ? enet_ready ; ethernet controller ready

PIN 29 clk20 ; 20 MHz clock input
NODE ? k ; clock divider buried node (d-ff)
NODE ? l ; clock divider buried node (d-ff)
PIN 28 clk10 comb ; 10 MHz clock output

NODE ? m ; success logic buried node (d-ff)
NODE ? n ; success logic buried node (d-ff)
PIN 30 success comb ; ethernet port access succeeded

NODE ? p ; prq latching logic buried node (d-ff)
NODE ? q ; prq latching logic buried node (d-ff)
NODE ? prqlatched1 ; first stage prq latched
NODE ? t ; prq latching logic buried node (d-ff)
NODE ? u ; prq latching logic buried node (d-ff)
NODE ? prqlatched2 ; second stage prq latched

PIN 31 prqlatched comb ; PRQ latched on CS falling

PIN 11 breq ; ethernet controller local bus request
NODE ? r ; back logic buried node (d-ff)
NODE ? s ; back logic buried node (d-ff)
NODE ? breqlatched ; breq latched on falling edge of sysclk
A-2 403 EVB User’s Manual

PIN 25 back comb ; ethernet controller local bus grant

;--------------------- Boolean Equation Segment -------------------

EQUATIONS

 sysclk = /sysclk
sysclk.CLKF = clk2x
sysclk.SETF = gnd
sysclk.RSTF = gnd

 xcvr_dir = /rw
 xcvr_oe = xcvr_en

 reset = /reset_in

 rx_led = /rx
 tx_led = /tx
 col_led = /col

 ethernetcs = ethernet + a26 + a27 + back
 sab = ethernet + a26 + a27 + back
 sba = ethernet + a26 + a27 + back
 rack = ethernet + a26 + /a27 + back + oe + /prqlatched
 wack = ethernet + a26 + /a27 + back + wbe0 + /prqlatched
 g = (ethernet + a26 + a27 + ack) * rack * prd
 edir = ethernet + oe + back

 e = /a + b * e
 a = /sysclk + a * /(b * ready_in * enet_ready)
 b = /sysclk + /a + (b * ready_in * enet_ready)

 ready = /f + h * ready
 f = /sysclk + f * /(h * e)
 h = /sysclk + /f + (h * e)

 enet_ready = (ethernet + a26 + a27 + (oe * wbe0) + /ack + back)

 success = /m + n * success
 m = (a26 + ethernet + oe * wbe0) + m * / (n *

 (/back * (/a27 + prqlatched * a27)))
 n = (a26 + ethernet + oe * wbe0) + /m +

 (n * (/back * (/a27 + prqlatched * a27)))

prqlatched1 = /p + q * prqlatched1
 p = sysclk + p * / (q * prq)
Programmable Logic Equations A-3

 q = sysclk + /p + (q * prq)

prqlatched2 = /t + u * prqlatched2
 t = sysclk + t * / (u * prqlatched1)
 u = sysclk + /t + (u * prqlatched1)

 prqlatched = prq * (ethernet * prqlatched2 + /ethernet *
 prqlatched)

breqlatched = /r + s * breqlatched
 r = sysclk + r * / (s * breq)
 s = sysclk + /r + (s * breq)
 back = ethernet * breqlatched + /ethernet * back

 d7 = success

 d7.TRST = /ethernet * /oe * a26 * /a27

 clk10 = /k + l * clk10
 k = /clk20 + k * /(l * /clk10)

 l = /clk20 + /k + (l * /clk10)
A-4 403 EVB User’s Manual

B

B
Program Trace Calls

This appendix describes the remote debugging interface provided by the ROM monitor.
These calls may be used by remote debuggers other than the RISCWatch debugger
provided with the 403 EVB kit.

B.1 Overview

The following section describes the message (ptrace) protocol that has been implemented
in the ROM monitor to support debug. If you want to interface your own debugger to the
ROM monitor or modify the ROM monitor to interface with your debugger, you will need to
understand the existing message protocol associated with the various debugging functions.

The ptrace interface to the ROM monitor can best be understood by reviewing the
information below along with the debug-specific ROM monitor source code (dbLib/ptrace.c).

B.2 MSGDATA Structure

In the interface descriptions shown below, several references are made to a “process id.”
The concept of process ids does not apply to the ROM monitor, so any nonzero value can
be used. The ROM monitor uses the value “42”.

Data structure "MSGDATA" is defined in dbg.h. New register definitions and new error
messages are also defined in dbg.h file.

dbg.h File

/* @(#)dbg.h 4.3 5/9/95 09:12:14 */
/*---+
| COPYRIGHT I B M CORPORATION 1994
| LICENSED MATERIAL - PROGRAM PROPERTY OF I B M
| REFER TO COPYRIGHT INSTRUCTIONS: FORM G120-2083
| US Government Users Restricted Rights - Use, duplication or
| disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
+---*/
#if !defined(DBG_H)
#define DBG_H
#define BREAKPT 0x7D821008
Program Trace Calls B-1

#ifndef MIN
#define MIN(X,Y) ((X) < (Y) ? (X) : (Y))
#endif
/*ptrace definitions based on AIX ptrace */
#define RD_TRACE_ME 0 /* used ONLY by target task to be traced*/
#define RD_READ_I 1 /* read target instruction addr space */
#define RD_READ_D 2 /* read target data address space */
#define RD_READ_U 3 /* read offset from the user structure */
#define RD_WRITE_I 4 /* write target instruction addr space */
#define RD_WRITE_D 5 /* write target data address space */
#define RD_WRITE_U 6 /* write offset to the user structure */
#define RD_CONTINUE 7 /* continue execution */
#define RD_KILL 8 /* terminate execution */
#define RD_STEP 9 /**execute one or more instructions*** !*/
#define RD_READ_GPR 11 /* read general purpose register */
#define RD_READ_FPR 12 /* read floating point register */
#define RD_WRITE_GPR 14 /* write general purpose register */
#define RD_WRITE_FPR 15 /* write floating point register */
#define RD_READ_BLOCK 17 /* read block of data */
#define RD_WRITE_BLOCK 19 /* write block of data */
#define RD_ATTACH 30 /* attach to a process */
#define RD_DETACH 31 /* detach a proc to let it keep running */
#define RD_REGSET 32 /* return entire register set to caller */
#define RD_REATT 33 /* reattach debugger to proc */
#define RD_LDINFO 34 /* return loaded program info */
#define RD_MULTI 35 /* set/clear multi-processing */
#define RD_READ_I_MULT 70 /* Read multiple inst words */
#define RD_READ_GPR_MULT 71 /* Read multiple registers */
#define RD_SINGLE_STEP 100 /**source line single step************ !*/
#define RD_LOAD 101 /* load a task !*/
#define RD_LOGIN 103 /*ptrace for login !*/
#define RD_LOGON 103 /*ptrace for logon !*/
#define RD_LOGOFF 104 /*ptrace for logoff !*/
#define RD_FILL 105 /*ptrace for fill memory !*/
#define RD_PASS 106 /*ptrace for pass !*/
#define RD_SEARCH 107 /*ptrace for search memory !*/
#define RD_WAIT 108 /*ptrace for wait status information !*/
/* Added to support ADEPT */
#define RD_READ_DCR 110 /*ptrace for reading DCR’s */
#define RD_WRITE_SPR 111 /*ptrace for writing SPR’s */
#define RD_WRITE_DCR 112 /*ptrace for writing DCR’s */
#define RD_STOP_APPL 113 /*ptrace for stopping the application */
#define RD_STATUS 114 /*ptrace for getting run status */
#define RD_READ_SPR 115 /*ptrace for reading SPR’s */
/* Added to support 403GC and 403GCX*/
#define RD_READ_TLB 116 /*ptrace for readingTLB(403GC &
403GCX) */
#define RD_WRITE_TLB 117 /*ptrace for writing TLB(403GC & 403GCX
) */ /* Added to support 602 */
#define RD_READ_SR 118 /*ptrace for reading SR’s */
B-2 403 EVB User’s Manual

#define RD_WRITE_SR 119 /*ptrace for writing SR’s */
#define MAX_PTRACE 119 /*last ptrace number */
#define RL_LOAD_REQ 180 /* Remote Loader - Load Request */
#define RL_LDINFO 181 /* Remote Loader - Load Information */
/*TCP/IP services for all sorts of remote debug */
#define OSOPEN_SERVNAME “osopen-dbg” /* OS/Open debug service */
#define OSOPEN_MON_SERVNAME “osopen-mon” /* OS/Open debug monitor svc */
/*new register definition */
#define DAR 137 /* Data Address Register ($dar) */
#define DSISR 138 /* Data St Int Status Reg ($dsisr) */
#define SRR0 139 /* Save and Restore Register 0 ($srr0) */
#define SRR1 140 /* Save and Restore Register 0 ($srr1) */
#define SR0 141 /* Segment Register ($sr0) */
#define SR1 142 /* Segment Register ($sr1) */
#define SR2 143 /* Segment Register ($sr2) */
#define SR3 144 /* Segment Register ($sr3) */
#define SR4 145 /* Segment Register ($sr4) */
#define SR5 146 /* Segment Register ($sr5) */
#define SR6 147 /* Segment Register ($sr6) */
#define SR7 148 /* Segment Register ($sr7) */
#define SR8 149 /* Segment Register ($sr8) */
#define SR9 150 /* Segment Register ($sr9) */
#define SR10 151 /* Segment Register ($sr10) */
#define SR11 152 /* Segment Register ($sr11) */
#define SR12 153 /* Segment Register ($sr12) */
#define SR13 154 /* Segment Register ($sr13) */
#define SR14 155 /* Segment Register ($sr14) */
#define SR15 156 /* Segment Register ($sr15) */
#define DEC 157 /* Decrementer ($dec) */
#define RTCU 158 /* Real Time Clock Upper ($rtcu) */
#define RTCL 159 /* Real Time Clock Lower ($rtcl) */
#define SDR0 160 /* Storage Description Reg ($sdr0) */
#define SDR1 161 /* Storage Description Reg ($sdr1) */
#define EIS0 162 /* External Int Summary Reg1($eis1) */
#define EIS1 163 /* External Int Summary Reg2($eis2) */
#define EIM0 164 /* External Int Mask Reg1($eim1) */
#define EIM1 165 /* External Int Mask Reg2($eim2) */
#define SRR2 166 /* Save and Restore Register 2 ($srr2) */
#define SRR3 167 /* Save and Restore Register 3 ($srr3) */
/*other definitions needed for remote debug */
#define RD_MAXDATA 1800 /* Total no of DWORDS in a MSGDATA */
#define RD_MINLENGTH 6 /* Min no of dwords in msg */
#define RD_MINBYTES (RD_MINLENGTH*sizeof(unsigned long))
#define RD_MAXBUFFER (RD_MAXDATA - RD_MINLENGTH)
#define RD_MAXPACKET 1000000 /* Max bytes in TCP/IP packet */
#define RD_REGBYTES (32+8)*4 /* No of bytes for all registers */
#define NO_KILL 1 /*do not kill any users processes */
#define KILL_PROC 0 /*kill user process upon logoff */
#define MAX_ERROR 1014 /*last error for rptrace */
#define MIN_ERROR 1000 /*first error for rptrace */
Program Trace Calls B-3

#define MIN_PACKET_SIZE 24
#define DBG_SPORT 20044
#define DBG_DPORT 20050
/*new error codes */
#define RD_NOLOAD_ERR 1000 /*no loader info available */
#define RD_COM_ERR 1001 /*communication error occured */
#define RD_SIZE_ERR 1002 /*not enough room to pass all info */
#define RD_NOTSUPP 1003 /*call not supported */
#define RD_REG_ERR 1004 /*invalid register number requested */
#define RD_NOTAVAIL 1005 /*call not implemented at this time */
#define RD_NOFILE_ERR 1006 /*file could not be loaded, no file */
#define RD_NOSCAN_ERR 1008 /*could not locate scan string file */
#define RD_NOPERM 1010 /*no permission to log on */
#define RD_INVALID_SEQ 1011 /*invalid rptrace sequence */
#define RD_BUSY_ERR 1012 /*some users is already logged on */
#define RD_PTRACE_ERR 1014 /*internal ptrace error */
#define RD_OK 0 /*rptrace completed ok */
#define ARCH_403 0x34000000 /* 403 architecture */
#define ARCH_601 0x36000000 /* 601 architecture */
#define ARCH_602 0x36303200 /* 602 architecture */
#define ARCH_603 0x36303300 /* 603 architecture */
#define ARCH_604 0x36303400 /* 604 architecture */
typedef struct msgdata /* message data structure */
{ unsigned long data_len; /* optional data length } */
unsigned long retcode; /* return code }MIN */
unsigned long request; /* request type }PART */
unsigned long address; /* function parameter }= */
unsigned long data /* function parameter }6*DWORD */
struct { unsigned f1:1;
 unsigned f2:1;
 unsigned f3:1;
 unsigned padd:21;
 unsigned f25:8;
 } flags;
#define printmsg flags.f1
#define breakpt flags.f2
#define dbg_seqno flags.f25
union { unsigned long trace_buffer[RD_MAXBUFFER];
 unsigned long processid;
 } parameter;
#define buffer parameter.trace_buffer /* buffer for data, in any */
#define rpid parameter.processid /* process id */
} MSGDATA;
#endif

B.3 Ptrace Definitions

The following section presents the application programming interface (API) for rptrace
messages. One field that is not shown here, because it is common to every call, is the
B-4 403 EVB User’s Manual

msg.printmsg flag. This may be set in an rptrace response where msg.retcode does not equal
RD_OK. When the msg.printmsg flag is set it indicates that a text string is contained in
msg.buffer and that this message should be displayed to the user. Typically this is an error
message that provides more detail as to why the rptrace call failed to return RD_OK.

Another field that is not shown is the dbg_seqno field. The field provides a mechanism for
recovering from lost requests and responses. If a request has the dbg_seqno field as not
zero, it is compared with the value from the previous request. If it matches, the action is not
performed and instead, the previous response is sent. This allows the debugger to time-out
and re-try requests without danger of performing the same function twice.

B.3.1 RD_ATTACH (30)

Attaches debugger to running process in target environment.

B.3.1.1 Request data

B.3.1.2 Response data

Table B-1. RD_ATTACH Request Table

Parameters Description

msg.request= RD_ATTACH Requested API function.

msg.rpid= process_id Numeric process ID on the target sys-
tem.(Any non zero value)

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-2. RD_ATTACH Response Table

Parameters Description

msg.retcode= ESRCH (3) The msg.pid parameter identifies a pro-
cess that does not exist.

msg.retcode= EIO (5) One of the parameters is incorrect.

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_NOTSUPP (1003) Call not supported for this interface.

msg.retcode= RD_OK (0) Successful completion.

msg.data_len=0 No additional data
Program Trace Calls B-5

B.3.2 RD_CONTINUE (7)

This request causes the process to resume execution. If the dbg_seqno field of the request is
zero, the response is not returned until the process stops due to a breakpoint or error.
Otherwise, an immediate response is sent from the RD_CONTINUE request and the
debugger should send the RD_STATUS request to see if the process has stopped.

B.3.2.1 Request data

B.3.2.2 Response data

Table B-3. RD_CONTINUE Request Table

 Parameters Description

msg.request= RD_CONTINUE Requested API function.

msg.address= address This field is ignored by ROM monitor.

msg.data= signal 0

msg.rpid= process_id Numeric process ID on the target sys-
tem.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-4. RD_CONTINUE Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.data= 0
B-6 403 EVB User’s Manual

B.3.3 RD_DETACH (31)

Detaches debugger from running process in target environment. Debugged process is
restarted and execution continues without debugger control.

B.3.3.1 Request data

B.3.3.2 Response data

Table B-5. RD_DETACH Request Table

Parameters Description

msg.request= RD_DETACH Requested API function.

msg.rpid= process_id Numeric process ID on the target sys-
tem.

msg.data= 0 Ignored by ROM monitor.

msg.address=1 Ignored by ROM monitor.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-6. RD_DETACH Response Table

Parameters Description

msg.retcode= ESRCH (3) The msg.pid parameter identifies a pro-
cess that does not exist, or a process
that is currently not being debugged.

msg.retcode= RD_COM_ERR (1001) Communications error occurred.

msg.retcode= RD_NOTSUPP (1003) Call not supported for this interface.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= EIO (5) One of the parameters is incorrect.

msg.data_len= 0 No additional data is being sent.
Program Trace Calls B-7

B.3.4 RD_FILL (105)

Fills memory with zeroes at the location specified by address for the number of bytes
specified by data.

B.3.4.1 Request data

B.3.4.2 Response data

Table B-7. RD_FILL Request Table

Parameters Description

msg.request= RD_FILL Requested API function.

msg.rpid= process_id Numeric process ID on the target sys-
tem.

msg.address= address Address of memory to fill with zeroes

msg.data= count Number of bytes to fill with zeroes

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-8. RD_FILL Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communications error occurred.

msg.retcode= RD_NOTSUPP (1003) Call not supported for this interface.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= EIO (5) One of the parameters is incorrect.

msg.data_len= 0 No additional data is being sent.
B-8 403 EVB User’s Manual

B.3.5 RD_KILL (8)

This request causes the process to terminate the same way it would with an exit routine.
The ROM monitor does not implement this function but simply returns an RD_OK response
for compatibility with older debuggers.

B.3.5.1 Request data

B.3.5.2 Response data

Table B-9. RD_KILL Request Table

Parameters Description

msg.request= RD_KILL Requested API function.

msg.rpid= process_id Process ID of the process to be killed.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-10. RD_KILL Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= ESRCH (3) The msg.pid parameter identifies a pro-
cess that does not exist.

msg.data_len= 0 Length of additional data being sent.
Program Trace Calls B-9

B.3.6 RD_LDINFO (34)

Request loader information from target environment. This information is provided to the
ROM monitor in the boot header or by the RL_LDINFO request. Refer to ROM Monitor
Load Format section for more information.

B.3.6.1 Request data

B.3.6.2 Response data

Table B-11. RD_LDINFO Request Table

Parameters Description

msg.request= RD_LDINFO Requested API function.

msg.rpid= process_id Process ID from which the loader infor-
mation is requested.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-12. RD_LDINFO Response Table

Parameters Description

msg.retcode= RD_NOLOAD_ERR
(1000)

No loader information is available.

msg.retcode= ESRCH (3) The msg.pid parameter identifies a pro-
cess that does not exist.

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_SIZE_ERR (1002) Not enough room in the buffer to fit all
load information.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= EIO (5) One of the parameters is incorrect.

msg.buffer[0]= ldinfo_next Offset to next loader information seg-
ment. See note below.

msg.buffer[1]= fd File descriptor for loaded object. In
remote debug 0xFFFF FFFF should be
returned (this is a space filler).
B-10 403 EVB User’s Manual

msg.buffer[2]= textorig Starting text address.

msg.buffer[3]= textsize Size of text.

msg.buffer[4]= dataorig Starting data address.

msg.buffer[5]= datasize Size of data.

msg.buffer[6]= (char *)pathname Fully qualified filename of the object file.

msg.buffer[X]= (char *)membername Member name (used for shared library
objects). X does not represent position
on word boundary. A NULL has to be
returned for the membername even if
the debugged file has no membername.

msg.buffer[ldinfo_next]= ldinfo_next Next loader block (notice "ldinfo_next").

msg.data_len= "variable" Set to length of data sent in msg.buffer.
Data length will vary depending on the
amount of information passed. Remem-
ber to count all the NULL characters.

Note: ldinfo_next=0 indicates that no further loader blocks are present, otherwise
ldinfo_next contains the offset of the next loader block in the buffer. This is actually
the length of the current block. For example, if the buffer contains three blocks of
lengths 38, 40 and 41 bytes, the ldinfo_next fields would be 38, 40 and 0, respec-
tively. Note also that the blocks do not have to be contiguous - it is possible that the
end of one block may not directly abut the following block. This may occur if addi-
tional information or word-aligning padding is placed after the end of the member-
name string. Path-name and member-name are strings terminated with a NULL
character.

Table B-12. RD_LDINFO Response Table

Parameters Description
Program Trace Calls B-11

B.3.7 RD_LOAD (101)

Loads executable program. Full path name of the file to be loaded is passed in this
message. The ROM monitor will respond by sending an RL_LOAD_REQ to the remote
loader daemon port.

B.3.7.1 Request data

B.3.7.2 Response data

Table B-13. RD_LOAD Request Table

Parameters Description

msg.request= RD_LOAD Requested API function.

msg.buffer= filename Name of file to load. A NULL character
terminates filename. Filename contains
fully qualified path to that file.

msg.data_len= strlen(filename)+1 String length of filename plus NULL
character.

Table B-14. RD_LOAD Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= RD_NOFILE_ERR (1006) Could not locate/load the file.

msg.rpid= process_id Process_id of the newly loaded file. This
number (integer) can not be equal to -1
(0xFFFF FFFF) or 0.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.
B-12 403 EVB User’s Manual

B.3.8 RD_LOGIN (103)

Initializes users LOGIN. This request must be the first rptrace request issued by the
debugger or results will be unpredictable.

B.3.8.1 Request data

B.3.8.2 Response data

Table B-15. RD_LOGIN Request Table

Parameters Description

msg.request= RD_LOGIN Requested API function.

msg.buffer[0]= host_name This field is ignored by ROM monitor.

msg.buffer[strlen(host_name)+1]=
user_name

This field is ignored by ROM monitor.

msg.data_len=
strlen(host_name)+strlen(user_name)+2

Length of additional data being sent.

Table B-16. RD_LOGIN Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.data_len= 0 Length of additional data being sent.
Program Trace Calls B-13

B.3.9 RD_LOGOFF (104)

Performs user LOGOFF function. This is used when the debugger performs normal
termination using quit or detach.

B.3.9.1 Request data

B.3.9.2 Response data

Table B-17. RD_LOGOFF Request Table

Parameters Description

msg.request= RD_LOGOFF Requested API function.

msg.data= NO_KILL This field is ignored by ROM monitor.

msg.data_len= 0 Length of additional data being sent.

Table B-18. RD_LOGOFF Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= RD_INVALID_SEQ (1011) Not logged on.

msg.data_len= 0 Length of additional data being sent.
B-14 403 EVB User’s Manual

B.3.10 RD_READ_D (2)

This request returns the integer in the debugged process address space at the location
pointed to by the address parameter. If the value of address is not in a valid address space,
unpredictable results will occur.

B.3.10.1 Request data

B.3.10.2 Response data

Table B-19. RD_READ_D Request Table

Parameters Description

msg.request= RD_READ_D Requested API function.

msg.address= address Address of memory to read data from.

msg.rpid= process_id Numeric process ID on the target sys-
tem.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-20. RD_READ_D Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= EIO (5) Debugged process can not access given
address.

msg.retcode= ESRCH (3) The msg.pid parameter identifies a pro-
cess that does not exist.

msg.data= data Data read at location pointed to by
address. -1 if error.

msg.data_len= 0 Length of additional data being sent.
Program Trace Calls B-15

B.3.11 RD_READ_DCR (110)

This request reads data directly from one of the DCRs (not the process’s copy). All DCR
registers are accessible through this message request. The sender is responsible for
supplying valid DCR values, no error checking is performed on this field.

B.3.11.1 Request data

B.3.11.2 Response data
B-16 403 EVB User’s Manual

B.3.12 RD_READ_GPR (11)

This request returns the content of one of the general-purpose or special-purpose registers
of the debugged process. Valid registers are defined in "dbg.h" and "sys/reg.h". Not all
defined registers are supported for all environments.

B.3.12.1 Request data

B.3.12.2 Response data

Table B-21. RD_READ_GPR Request Table

Parameters Description

msg.request= RD_READ_GPR Requested API function.

msg.rpid= process_id Numeric process ID on the target sys-
tem.

msg.address= register Name of the register to be read.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-22. RD_READ_GPR Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= EIO (5) Register is not defined.

msg.retcode= RD_REG_ERR (1004) Unable to access given register.

msg.data= value Value read from register. 0xFFFFFFFF if
error occurred.

msg.retcode= ESRCH (3) The msg.pid parameter identifies a pro-
cess that does not exist.

msg.data_len= 0 Length of additional data being sent.
Program Trace Calls B-17

B.3.13 RD_READ_GPR_MULT(71)

This request returns the contents of general-purpose registers 0 to 18, inclusive, of the
debugged process.

B.3.13.1 Request data

B.3.13.2 Response data

Table B-23. RD_READ_GPR_MULT Request Table

Parameters Description

msg.request= RD_READ_GPR_MULT Requested API function.

msg.rpid= process_id Numeric process ID on the target sys-
tem.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-24. RD_READ_GPR_MULT Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= RD_NOTSUPP (1003) Call not supported by this interface.

msg.retcode= RD_REG_ERR (1004) Unable to access given register.

msg.retcode= ESRCH (3) The msg.pid parameter identifies a pro-
cess that does not exist.

msg.data_len= 76 (0x4C) Length of additional data being sent.

msg.buffer[0-18] Values read from GPR0 to GPR18.
Undefined if error.
B-18 403 EVB User’s Manual

B.3.14 RD_READ_I (1)

This request returns the integer in the debugged process address space at the location
pointed to by the address parameter. If the value of address is not in a valid address space,
unpredictable results will occur.

B.3.14.1 Request data

B.3.14.2 Response data

Table B-25. RD_READ_I Request Table

Parameters Description

msg.request= RD_READ_I Requested API function.

msg.address= address Address of memory to read data from.

msg.rpid= process_id Numeric process ID on the target sys-
tem.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-26. RD_READ_I Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= EIO (5) Debugged process can not access given
address.

msg.retcode= ESRCH (3) The msg.pid parameter identifies a pro-
cess that does not exist.

msg.data= data Data read at location pointed to by
address. -1 if error (retcode should also
be set to EIO).

msg.data_len= 0 Length of additional data being sent.
Program Trace Calls B-19

B.3.15 RD_READ_I_MULT (71)

This request returns the 32 integers in the debugged process address space at the location
pointed to by the address parameter. If the value of address is not in a valid address space,
unpredictable results will occur.

B.3.15.1 Request data

B.3.15.2 Response data

Table B-27. RD_READ_I_MULT Request Table

Parameters Description

msg.request= RD_READ_I_MULT Requested API function.

msg.address= address Address of memory to read data from.

msg.rpid= process_id Numeric process ID on the target sys-
tem.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-28. RD_READ_I_MULT Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= EIO (5) Debugged process can not access given
address.

msg.retcode= ESRCH (3) The msg.pid parameter identifies a pro-
cess that does not exist.

msg.retcode= RD_NOTSUPP (1003) Call not supported by this interface.

msg.buffer[0-0x1F] Contents of addresses from location
pointed to by address to address + 0x1F.

msg.data_len= 128 (0x80) Length of additional data being sent.
B-20 403 EVB User’s Manual

B.3.16 RD_READ_SPR (115)

This request reads data directly from one of the SPRs (not the process’s copy). All SPR
registers are accessible through this message request. The sender is responsible for
supplying valid SPR values, no error checking is performed on this field.

B.3.16.1 Request data

B.3.16.2 Response data

Table B-29. RD_READ_SPR Request Table

Parameters Description

msg.request= RD_READ_SPR Requested API function.

msg.address= SPR number SPR number to read.

msg.data_len= 0 Length of additional data being sent.

Table B-30. RD_READ_SPR Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.data= value Value read from register.

msg.data_len= 0 Length of additional data being sent.
Program Trace Calls B-21

B.3.17 RD_READ_TLB(116)

This request reads data directly from the Translation Lookaside Buffer (TLB). An index can
be passed to read a specific TLB entry or an index of 0xFFFFFFFF can be used to request
all of the entries in the TLB. If the value of the index specified is not within the range of valid
TLB indices, an appropriate error code is returned. If the index specified is valid, the TLB
entry’s data word (TLB lo), tag word (TLB hi), and TID (translation id) are returned. If all
entries were requested, the TLB lo, TLB hi, and TID values for each of the entries in the TLB
are returned in the message buffer. This request is valid only for chips containing a TLB.

B.3.17.1 Request data

B.3.17.2 Response data

Table B-31. RD_READ_TLB Request Table

Parameters Description

msg.request= RD_READ_TLB Requested API function.

msg.address= TLB index
 (use 0xFFFFFFFF to read all entries)

Index of TLB entry to read.

msg.data_len= 0 Length of additional data being sent.

Table B-32. RD_READ_TLB Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= RD_REG_ERR(1004) TLB index out of range.

msg.buffer[0,1,2,...]= TLB lo, TLB hi, TID, ... Values read from TLB entry(s).

msg.data_len= 12 (when single entry read)
msg.data_len= 12 x number of TLB entries
 (when all entries read)

Number of bytes in msg.buffer.
B-22 403 EVB User’s Manual

B.3.18 RD_STATUS (114)

This request is used to get program execution status and to determine if a previous
RD_CONTINUE request was received.

B.3.18.1 Request data

B.3.18.2 Response data

Table B-33. RD_STATUS Request Table

Parameters Description

msg.request= RD_STATUS Requested API function.

msg.rpid= process_id Numeric process ID on the target sys-
tem

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-34. RD_STATUS Response Table

Parameters Description

msg.address= execution status Status is 1 if program is running and 0 if
stopped. In the case of an error, this field
will be -1 (0xFFFFFFFF).

msg.data= sequence number Sequence number of the last
RD_CONTINUE request that was
received.

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= RD_ESRCH (3) The msg.pid field identifies a process
that does not exist.
Program Trace Calls B-23

B.3.19 RD_STOP_APPL (113)

This request is used to interrupt program execution.

B.3.19.1 Request data

B.3.19.2 Response data

Table B-35. RD_STOP_APPL Request Table

Parameters Description

msg.request= RD_STOP_APPL Requested API function.

msg.rpid= process_id Numeric process ID on the target sys-
tem

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-36. RD_STOP_APPL Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= RD_ESRCH (3) The msg.pid field identifies a process
that does not exist.
B-24 403 EVB User’s Manual

B.3.20 RD_WAIT (108)

This call allows the debugger to determine the current status of the debugged process after
it is stopped. The first (least significant) byte of the process status indicates the reason for
stoppage: this is always 0x7f. The second byte contains the signal number that caused the
stop. Valid signals are:

AIX_SIGILL (4) - illegal instruction
AIX_SIGTRAP (5) - hit a trap instruction (breakpoint)
AIX_SIGFPE (8) - floating point error

AIX_SIGSEGV (11) - storage violation

For example after hitting a breakpoint, the status of 0x57f is returned to the debugger. After
the program terminates, the first byte contains 0x00 and the rest of the status holds the
program exit code. After RD_KILL call wait status of 0x57f should be returned.

B.3.20.1 Request data

B.3.20.2 Response data

Table B-37. RD_WAIT Request Table

Parameters Description

msg.request= RD_WAIT Requested API function.

msg.data_len= 0 Length of data in msg.buffer.

Table B-38. RD_WAIT Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.data= status Process status.

msg.address= pid Process id.

msg.data_len= strlen(message_string) The ROM monitor always returns 0 in
this field.

msg.buffer= message_string Formatted message string text (NULL
terminated).
Program Trace Calls B-25

B.3.21 RD_WRITE_BLOCK (19)

This request writes a block of data into the address space of the debugged process at the
address pointed to by the msg.address field. The number of bytes to write is contained in the
msg.data field and the data is in the msg.buffer field. Unpredictable results occur if the
msg.address parameter points to a location that can not be accessed by the debugged
process.

B.3.21.1 Request data

B.3.21.2 Response data

Table B-39. RD_WRITE_BLOCK Request Table

Parameters Description

msg.request= RD_WRITE_BLOCK Requested API function.

msg.address= address Address of memory to write data to.

msg.data= count Number of bytes of buffer area to be
written

msg.buffer Data to be written.

msg.data_len= count Length of additional data being sent.

Table B-40. RD_WRITE_BLOCK Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= EIO (5) Debugged process can not access given
address.

msg.data_len= 0 Length of additional data being sent.
B-26 403 EVB User’s Manual

B.3.22 RD_WRITE_D (5)

This request writes the value of the msg.data parameter into the address space of the
debugged process at the address pointed to by the msg.address parameter. Unpredictable
results occur if the msg.address parameter points to a location that can not be accessed by
the debugged process.

B.3.22.1 Request data

B.3.22.2 Response data

Table B-41. RD_WRITE_D Request Table

Parameters Description

msg.request= RD_WRITE_D Requested API function.

msg.address= address Address of memory to write data to.

msg.data= data Data to write to memory.

msg.rpid= process_id Numeric process ID on the target sys-
tem.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-42. RD_WRITE_D Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= EIO (5) Debugged process can not access given
address.

msg.retcode= ESRCH (3) The msg.pid parameter identifies a pro-
cess that does not exist.

msg.data= data Data written at location pointed to by
address. -1 if error (retcode should also
be set to EIO or ESRCH).

msg.data_len= 0 Length of additional data being sent.
Program Trace Calls B-27

B.3.23 RD_WRITE_DCR (112)

This request writes data directly to one of the DCRs (not the process’s copy). All DCR
registers are accessible through this request. The requester is responsible for supplying
valid DCR values. No error checking is performed on this field.

B.3.23.1 Request data

B.3.23.2 Response data

Table B-43. RD_WRITE_DCR Request Table

Parameters Description

msg.request= RD_WRITE_DCR Requested API function.

msg.address= DCR number DCR number to be written

msg.data= value Data to write to register.

msg.data_len= 0 Length of additional data being sent.

Table B-44. RD_WRITE_DCR Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.data_len= 0 Length of additional data being sent.
B-28 403 EVB User’s Manual

B.3.24 RD_WRITE_GPR (14)

This request writes data to one of the general-purpose or special-purpose registers of the
debugged process. Valid registers are defined in "dbg.h" and "sys/reg.h". Not all defined
registers are supported for all environments.

B.3.24.1 Request data

B.3.24.2 Response data

Table B-45. RD_WRITE_GPR Request Table

Parameters Description

msg.request= RD_WRITE_GPR Requested API function.

msg.rpid= process_id Numeric process ID on the target sys-
tem.

msg.address= register Name of the register to be written.

msg.data= value Value to be written to the register.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-46. RD_WRITE_GPR Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= EIO (5) Register is not defined.

msg.retcode= RD_REG_ERR (1004) Unable to access given register.

msg.data= value Value written to register. 0xFFFFFFFF if
error occurred.

msg.retcode= ESRCH (3) The msg.pid parameter identifies a pro-
cess that does not exist.

msg.data_len= 0 Length of additional data being sent.
Program Trace Calls B-29

B.3.25 RD_WRITE_I (4)

This request writes the value of the msg.data parameter into the address space of the
debugged process at the address pointed to by the msg.address parameter. This request
fails if the msg.address parameter points to a location that can not be accessed by debugged
process. This call sets break points in the debugged process by writing TRAP
(0x7D821008) instructions.

B.3.25.1 Request data

B.3.25.2 Response data

Table B-47. RD_WRITE_I Request Table

Parameters Description

msg.request= RD_WRITE_I Requested API function.

msg.rpid= process_id Numeric process ID on the target sys-
tem.

msg.address= address Address of memory to write data to.

msg.data= data Data to write to memory.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.

Table B-48. RD_WRITE_I Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= EIO (5) Debugged process can not access given
address.

msg.retcode= ESRCH (3) The msg.pid parameter identifies a pro-
cess that does not exist.

msg.data= data Data written at location pointed to by
address. -1 if error (retcode should also
be set to EIO or ESRCH).

msg.data_len= 0 Length of additional data being sent.
B-30 403 EVB User’s Manual

B.3.26 RD_WRITE_SPR (112)

This request writes data directly to one of the SPRs (not the process’s copy). All SPR
registers are accessible through this request. The requester is responsible for supplying
valid SPR values. No error checking is performed on this field.

B.3.26.1 Request data

B.3.26.2 Response data

Table B-49. RD_WRITE_SPR Request Table

Parameters Description

msg.request= RD_WRITE_SPR Requested API function.

msg.address= SPR number SPR number to be written

msg.data= value Data to write to register.

msg.data_len= 0 Length of additional data being sent.

Table B-50. RD_WRITE_SPR Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.data_len= 0 Length of additional data being sent.
Program Trace Calls B-31

B.3.27 RD_WRITE_TLB(117)

This request writes data directly to the Translation Lookaside Buffer (TLB). An index is
passed along with new TLB lo, TLB hi, and TID (translation id) values, to specify the TLB
entry and the data to be written. If the value of the index specified is not within the range of
valid TLB indices, an appropriate error code is returned. If the index specified is valid, the
TLB entry’s data word (TLB lo), tag word (TLB hi), and TID are updated appropriately. This
request is valid only for chips containing a TLB.

B.3.27.1 Request data

B.3.27.2 Response data

Table B-51. RD_WRITE_TLB Request Table

Parameters Description

msg.request= RD_WRITE_TLB Requested API function.

msg.address= TLB index Index of TLB entry to write.

msg.buffer[0-2]= TLB lo, TLB hi, TID Data to write to TLB entry.

msg.data_len= 12 Length of additional data being sent.

Table B-52. RD_WRITE_TLB Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= RD_REG_ERR(1004) TLB index out of range.

msg.data_len= 0 Length of additional data being sent.
B-32 403 EVB User’s Manual

B.3.28 RL_LDINFO (181)

This request provides load information from the host to the ROM monitor. This request is
used when the target is loaded by a process other than the debugger. The information
specified on the this request will be returned on subsequent RD_LDINFO requests.

B.3.28.1 Request data

B.3.28.2 Response data

Table B-53. RL_LDINFO Request Table

Parameters Description

msg.request= RL_LDINFO Requested API function.

msg.data_len= sizeof(struct ldinfo) +
strlen(pathname)

Length of additional data being sent.

msg.buffer= load information See description of RD_LDINFO request.

Table B-54. RL_LDINFO Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.data_len= 0 Length of additional data being sent.
Program Trace Calls B-33

B.3.29 RL_LOAD_REQ(180)

This request flows from the ROM monitor to the host when a RD_LOAD request is received.
The port of the request is for the remote loader daemon (20050) to accommodate loading by
a process independent from the debugger.

B.3.29.1 Request data

B.3.29.2 Response data

Table B-55. RL_LOAD_REQ Request Table

Parameters Description

msg.request= RL_LOAD_REQ Requested API function.

msg.buffer= filename NULL terminated string containing fully
qualified name of file to be loaded.

msg.data_len= strlen(filename) Length of additional data being sent.

Table B-56. RL_LOAD_REQ Response Table

Parameters Description

msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= RD_NOFILE_ERR (1006) Can’t open file or file is incorrect format.

msg.retcode= RD_PTRACE_ERR
(1014)

Error reading file.

msg.rpid= process_id Process ID of newly loaded file. This
number (integer) can not be equal to -1
(0xFFFF FFFF) or 0.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.
B-34 403 EVB User’s Manual

C

CC
ROM Monitor Load Format

This appendix presents the ROM Monitor load format requirements.

C.1 Overview

The ROM Monitor load format is designed to permit the specification of multiple text and
data sections. The format consists of a linked list of sections of specified types prefixed by a
small boot header, boot_block, that specifies the initial target of the image and the entry
point. The boot_block header is placed at the front of the image by eimgbld or nimgbld . The
ROM Monitor does no relocation. It is assumed that the destination addresses for the
individual sections are the same ones specified during the application’s linkage. The
info_block structure is reserved in the bootstrap program, bootlLib.s. nimgbld or eimgbld
patch in the values within the info_block structure for bootLib to use at run time. The
bootstrap program processes the sections back to front, that is, from the end of the image to
the beginning. This is to avoid destructive overlap during the processing of typical images.

The sections are preceded by header blocks which identify the section types. The headers
are linked together in a doubly linked list.

C.2 Section Types

There are three basic section types. Generally, they can occur in the image in any order, but
are usually arranged in ascending address order. The section header block has the
following format:

/*---+
| Relocation block structure.
+---*/
typedef struct rel_block {
 unsigned long type;
 unsigned long dest_addr;
 unsigned long size;
 union {
 struct data_info {
 unsigned long size_to_fill;
 unsigned long char_to_fill;
ROM Monitor Load Format C-1

 } data_info_str;
 struct text_info {
 unsigned long toc_pointer; /* used for XCOFF; not used for ELF */
 unsigned long entry_pt;
 } text_info_str;
 unsigned long number_symbols;
 } section_info;
 struct rel_block *next;
 struct rel_block *bptr;
} rel_block_t;

The type field is one of the following manifest constants:

#define TEXT_SECT 0x00000001
#define DATA_SECT 0x00000002
#define SYMB_SECT 0x00000004

The dest_addr specifies the target for the block, while size is the extent of the block, not
counting the header. The bootstrap program uses this information to move the block to the
destination specified at link time. next and bptr are the section header forward and
backward pointers, respectively.

C.2.1 First Section

The first section is a text section. The ROM loader places the entire image at the address
specified in the boot_block header. The entry point specified in the boot_block header is
assumed to be a branch, followed by the first section header, info_block. This is to allow the
bootstrap to easily gain immediate addressability to the first section block.

The format of the first section block is shown below:

/*---+
| First section header
+---*/
struct info_block {
 long magic_num; /* magic number */
 long text_start; /* addr of text section from section header */
 long text_size; /* size of text section from section header */
 long data_start; /* addr of data section from section header */
 long data_size; /* size of data section from section header */
 long elf_hdr_size; /* size of ELF headr */
 long sym_start; /* addr of symbol table */
 long num_syms; /* number of symbols */
 long toc_ptr; /* used for XCOFF; not used for ELF */
 struct rel_block * next; /* pointer to next boot section header */
};

• magic_num is used for verification purposes and must be X’004D 5054’.

• text_start is the physical address value from the object text header.
• text_size is the size in bytes from the object text header.
• data_start is the physical address from the object data header.
C-2 403 EVB User’s Manual

• data_size is the size in bytes from the object data header.
• elf_hdr_size is the size of the object header. The debugger requires this infor-

mation.

• sym_start is the address of the symbol table in storage.
• num_syms is the number of symbol entries.
• next points to the next section header.

C.2.2 Text Section

For a text section, the union section_info contains the structure text_info , specifying the
entry point of the text section.

C.2.3 Data Section

For a data section, the union section_info contain the structure data_info , specifying
size_to_fill and char_to_fill . These parameters are used to optionally fill a region past the
size extent specified in the base rel_block with a character. It is most often used to zero bss
by specifying the size of the bss in size_to_fill and 0x0 for char_to_fill .

C.2.4 Symbol Section

For symbols, the union section_info contains the number of symbols in the section. The
data in this section consists of the symbol table from the original object file.

C.3 Boot Header

The entire image is preceded by the boot header that was added by nimgbld or eimgbld .
The ROM loader uses this information to verify that it is a ROM Monitor load image,
determine where to place the image, and whether to invoke the ROM Monitor debugger
before transferring control to the entry point. The boot header is stripped off by the ROM
Monitor loader and does not appear at the load address.

The boot header has the following format:

/*---+
| Boot header.
+---*/
typedef struct boot_block {
 unsigned long magic;
 unsigned long dest;
 unsigned long num_512blocks;
 unsigned long debug_flag;
 unsigned long entry_point;
 unsigned long reserved[3];
} boot_block_t;
ROM Monitor Load Format C-3

• magic identifies this image as a legitimate ROM Monitor image and must have
the value X’0052 504F’.

• dest is the target address for the image (after the boot header is stripped off).
• num_512blocks - Boot images are padded to a multiple of 512 byte blocks.

This field specifies the number of blocks.

• debug_flag controls whether the ROM Monitor debugger gets control before
the loaded image starts. If the value is 0x0, the image runs immediately. If
0x01, the debugger gains control as soon as the load is complete.

• entry_point specifies the address where the image will receive control.
C-4 403 EVB User’s Manual

W

D

D
403 EVB Bill of Materials

This appendix presents the bill of materials for the EVB and its components:

HEADING EXPLANATION:

QTY - Quantity Used

IBM PN - IBM Part Number

DESCRIPTION - The Component Description

COMP CODE - System Assigned Component Code (R1, C33, U1, etc)

VENDOR PN - Supplier Code or Part Number From the Vendor Catalog

VENDOR - Supplier Code of the Part

W/NW - Wetable vs Non-Wetable indicator.

QTY DESCRIPTION/COMP CODE VENDOR PN VENDOR W/N

1 Raw Card D13H8618 IBM W
(or) 42H1843 IBM W

1 10 base 2 transformer LT6003 VALOR W
T1

1 open coll hex inverter SN7406N TI W
U25

8 octal bus transceiver SN74ABT245AN TI W
U3 U4 U5 U6 U8 U9 U12
U16

1 octal buffer SN74ALS244CN TI W
U24
403 EVB Bill of Materials D-1

1 octal transparent D latch DM74ALS573BN NATIONAL W
U14

1 octal bus transcvr & reg DM74ALS646NT NATIONAL W
U15

1 flash EPROM 128KX8 AM29F010-70JC AMD W
U7

1 right angle male BNC conn 227161-2 AMP W
P5

41 .1U,20%,50v ECQ-V1H104JL PANASONIC W
C1 C2 C3 C4 C5 C6 C8 C9
C10 C11 C12 C13 C14 C15
C16 C17 C18 C19 C20 C21
C22 C23 C24 C25 C26 C27
C28 C30 C31 C32 C33 C34
C35 C36 C41 C42 C43 C44
C45 C47 C56

1 10U,20%,25v ECS-F1EE106K PANASONIC W
C7

3 22U,20%,25v ECS-F1EE226 PANASONIC W
C29 C37 C40

1 .001U,20%,1kv ECK-D3A102KBN PANASONIC W
C38

1 .01U,20%,100v ECQ-V1103JM PANASONIC W
C39

1 120 pin right angle conn 650874-4 AMP W
P3

1 5 pin DIN recpt rt angle 211450-1 AMP W
P1

2 9 pin D-SHELL S&L TAIL conn 747840-4 AMP W
P2 P4

1 serial ntwrk intface cntlr DP83902AV NATIONAL W
U21

1 coaxial transcvr interface DP8392CN NATIONAL W
U20

1 power on reset gen DS1233-10 DALLAS W
U23

2 fuse holder clip F041-ND DIGIKEY W
F1 F2

1 1x1 pin header 2401-6112-TG 3M W
J8

7 1x2 pin header - male 2402-6112-TG 3M W
J3 J4 J5 J6 J7 J10 J11

1 2x8 pin header - male 2416-6122-TG 3M W
J2

1 1x3 pin header 2403-6112-TG 3M W
J9
D-2 403 EVB Kit User’s Manual

1 static ram 8Kx8-100ns SRM2264LC SMOS W
U13

2 led display - green LN342GP PANASONIC W
DS1 DS4

1 led display - yellow LN442YP PANASONIC W
DS3

1 led display - red LN242RP PANASONIC W
DS2

1 3.3v reg LT1086CT LINEAR TECH W
U18

1 programable logic array MACH210A-12JC AMD W
U22

1 quad RS232 transceiver MAX208CNG MAXIM W
U11

1 66 mhz osc MX045HS-66 CTS W
Y1

1 20 mhz osc MX045HS-20 CTS W
Y2

1 7.3728 mhz osc MX045HS-7.3728 CTS W
Y3

1 UART PC16550DV NATIONAL W
U19

2 push button A2216 APEM N
SW1 SW2

1 dc to dc converter PM7102 VALOR W
U17

1 PowerPC RISC PPC403GA-JA33C1 IBM W
(or) PPC403GC-JA33C1 IBM W
(or) PPC403GCX-JA33C1 IBM W

U10
3 5.1k,1%,1/4w resistor 1/4w 5%-5101X YAGEO W

R2 R10 R12
1 1m,1%,1/4w resistor 1/4w 5%-1004X YAGEO W

R6
4 200,1%,1/4w resistor 1/4w 5%-2000X YAGEO W

R3 R4 R5 R11
6 10K,10%,1/4w resistor 1/4w 5%-1003X YAGEO W

R18 R22 R23 R24 R25 R26
1 121,1%,1/4w resistor 1/4w 1%-1210X YAGEO W

R7
1 196,1%,1/4w resistor 1/4w 1%-1960X YAGEO W

R8
3 24,1%,1/4w resistor 1/4w 5%-24R0X YAGEO W

R19 R20 R21
3 33,1%,1/4w resistor 1/4w 5%-33R0X YAGEO W

R9 R14 R15
403 EVB Bill of Materials D-3

2 499,1%,1/4w resistor 1/4w 5%-4990X YAGEO W
R16 R17

2 1k,1%,1/4w resistor 1/4w 5%-1002X YAGEO W
R1 R13

1 10k-10 resistor pack 770-101-R10K CTS W
RP1

1 1.5k-5 resistor pack 770-61-R1.5K CTS W
RP2

1 4.7k-5 resistor pack 770-61-R4.7K CTS W
RP3

1 10k-5 resistor pack 770-61-R10K CTS W
RP5

1 330-5 resistor pack 770-61-330 CTS W
RP4

2 72 pin simm socket 822019-4 AMP W
U1 U2

1 2x10 pin header - male 2520-6002-UB 3M W
J1

1 1mx32 60 ns EDO DRAM V408J32S60 MOSEL N

1 160 PQFP socket base 822114-4 AMP W

1 160 PQFP socket cover 822115-4 AMP N

1 32 pin PLCC socket 821665-1 AMP W

2 44 pin PLCC socket 821575-1 AMP W

1 84 pin PLCC socket 821573-1 AMP W

4 black 2 pin jumper 929950-00-I 3M N

4 screw lock 207952-3 AMP N

4 nylon pan head screws (6-32x.5) N

4 nylon hex spacers (6-32x.5) N

1 Fuse (3A) 3AG LITTLEFUSE N
D-4 403 EVB Kit User’s Manual

Total number of Components: 133

HIGHEST-USED COMPONENT CODES

C56, D54, F2, J11, P5, R26, RP5, SW2, T1, U25

UNUSED COMPONENT CODES
--
C46, C48-C55
403 EVB Bill of Materials D-5

D-6 403 EVB Kit User’s Manual

Index

Symbols
.machine 9-18

A
Additional instructions and extended mnemon-

ics 9-18
Alignment Exception Support Library 9-1
ANSI C I/O Library 9-1
ANSI C Library 9-1
ANSI C Math Library 9-1
as-emb 9-18

.machine 9-18
async safe 10-1
async_init() function 10-13
asyncLib.a library 9-4

B
biosenet_attach() function 10-14
Block Buffer Library 9-1
book

conventions used xxv
highlighting xxv
numeric xxv
syntax diagrams xxvi

how organized xxiv
who should use this book xxiii

Boot Library 9-1, 9-4
booting the processor 5-15

C
C++ runtime support library 9-2
cancel safe 10-2
Clock Support Library 9-2
clock_set() function 10-16
connecting the EVB hardware 5-10
connectors

ethernet 5-4
expansion interface 5-6
power 5-8
RISCTrace 5-4
RISCWatch JTAG 5-4
serial port 5-3

conventions used xxv
highlighting xxv
numeric xxv
syntax diagrams xxvi

D
dbg_ioLib_init() function 10-17
dcache_flush() function 10-18
dcache_invalidate() function 10-19
Debug Support Library 9-2
Device and File Support Library 9-2
device drivers

asynchronous 9-6
ESCCS 9-11
Ethernet 9-16

dma_disable() function 10-20
dma_setup() function 10-21
dma_status() function 10-23
DOS File System Support Library 9-2
driver_install

async_init 9-6
Dynamic Loader Library 9-2

E
enet_disable_ipinput() function 10-25
enet_enable_ipinput() function 10-26
enet_native_attach() function 10-27
enet_recv_packet() function 10-29
enet_send_packet() function 10-30
equations

evaluation card PAL A-1
escc_init() function 10-31
Ethernet 9-16
ext_int_disable() function 10-33
ext_int_enable() function 10-34
ext_int_install() function 10-35
ext_int_query() function 10-37
Extended Serial Communication Support Li-

brary 9-2

F
Federal Communications Commission (FCC)

Statement xxvii
File Transfer Protocol Support Library 9-2
Flash update utility 7-30
Floating Point Emulation Library 9-2
Index X-1

Floating Point Library 9-2
fpemul_init() function 10-38
functions

async_init() 10-13
biosenet_attach() 10-14
clock_set() 10-16
dbg_ioLib_init() 10-17
dcache_flush() 10-18
dcache_invalidate() 10-19
dma_disable() 10-20
dma_setup() 10-21
dma_status() 10-23
enet_disable_ipinput() 10-25
enet_enable_ipinput() 10-26
enet_native_attach() 10-27
enet_recv_packet() 10-29
enet_send_packet() 10-30
escc_init() 10-31
ext_int_config 10-32
ext_int_disable() 10-33
ext_int_enable() 10-34
ext_int_install() 10-35
ext_int_query() 10-37
fpemul_init() 10-38
ioLib_init() 10-39
oakenet_attach() 10-40
ppcAbend() 10-41
ppcAndMsr() 10-42
ppcCntlzw() 10-43
ppcDcbf() 10-44
ppcDcbi() 10-45
ppcDcbst() 10-46
ppcDcbz() 10-47
ppcDflush() 10-49
ppcEieio() 10-50
ppcHalt() 10-51
ppcIcbi() 10-52
ppclsync() 10-53
ppcMfbear() 10-54
ppcMfbesr() 10-55
ppcMfbr0() - ppcMfbr7() 10-56
ppcMfbrf0() - ppcMfbrf7() 10-58
ppcMfcdbcr() 10-59
ppcMfdbcr() 10-61
ppcMfdbsr() 10-62

ppcMfdccr() 10-63
ppcMfdcwr() 10-64
ppcMfdear() 10-65
ppcMfdmacc0() • ppcMfdmacc3() 10-66
ppcMfdmacr0() • ppcMfdmacr3() 10-68
ppcMfdmact0() • ppcMfdmact3() 10-69
ppcMfdmada0() • ppcMfdmada3() 10-70
ppcMfdmasa0() • ppcMfdmasa3() 10-71
ppcMfdmasr() 10-72
ppcMfesr() 10-73
ppcMfevpr() 10-74
ppcMfexier() 10-75
ppcMfexisr() 10-76
ppcMfgpr1() 10-77
ppcMfgpr2() 10-78
ppcMfiac1() 10-79
ppcMfiac2() 10-80
ppcMficcr() 10-81
ppcMficdbdr() 10-82
ppcMfiocr() 10-83
ppcMfmsr() 10-84
ppcMfpbl1() • ppcMfpbl2() 10-85
ppcMfpbu1() • ppcMfpbu2() 10-86
ppcMfpid() 10-87
ppcMfpit() 10-88
ppcMfpvr() 10-89
ppcMfsgr() 10-90
ppcMfsprg1() • ppcMfsprg3() 10-91
ppcMfsprg1() • ppcMtsprg3() 10-134
ppcMfsrr0() 10-92
ppcMfsrr1() 10-93
ppcMfsrr2() 10-94
ppcMfsrr3() 10-95
ppcMftb() 10-96
ppcMftcr() 10-97
ppcMftlbhi() 10-98
ppcMftlblo() 10-99
ppcMftsr() 10-100
ppcMfutb() 10-101
ppcMfzpr() 10-102
ppcMtbesr() 10-103
ppcMtbr0() - ppcMtbr7() 10-104
ppcMtbrh0() - ppcMtbrh7() 10-106
ppcMtcdbcr() 10-107
ppcMtdbcr() 10-110
X-2 403 EVB User’s Manual

ppcMtdbsr() 10-111
ppcMtdccr() 10-112
ppcMtdcwr() 10-113
ppcMtdmacc0() • ppcMtdmacc3() 10-114
ppcMtdmacr0() • ppcMtdmacr3() 10-115
ppcMtdmact0() • ppcMtdmact3() 10-116
ppcMtdmada0() • ppcMtdmada3() 10-117
ppcMtdmasa0() • ppcMfdmasa3() 10-118
ppcMtdmasr() 10-119
ppcMtesr() 10-120
ppcMtevpr() 10-121
ppcMtexier() 10-122
ppcMtexisr() 10-123
ppcMtiac1() 10-124
ppcMtiac2() 10-125
ppcMticcr() 10-126
ppcMtiocr() 10-127
ppcMtmsr() 10-128
ppcMtpbl1() • ppcMtpbl2() 10-129
ppcMtpbu1() • ppcMtpbu2() 10-130
ppcMtpid() 10-131
ppcMtpit() 10-132
ppcMtsgr() 10-133
ppcMtsrr1() 10-136
ppcMtsrr2() 10-137
ppcMtsrr3() 10-138
ppcMttb() 10-139
ppcMttcr() 10-140
ppcMttlbhi() 10-141
ppcMttlblo() 10-142
ppcMttsr() 10-143
ppcMtzpr() 10-144
ppcOrMsr() 10-145
ppcSync() 10-146
ppcTlbia() 10-147
ppcTlbsx() 10-148
ppMfdac1() • ppcMfdac2() 10-60
ppMtdac1() 10-108
ppMtdac2() 10-109
processor_speed() 10-149
s1dbprinf() 10-150
s1dbprinfapp() 10-151
s2dbprinf() 10-153
s2dbprinfapp() 10-154
timertick_install() 10-156

timertick_remove() 10-157
vs1dbprinf() 10-158

H
hardware

block diagram 6-1
embedded controller 6-2
evaluation board bill of materials D-1
memory subsystems 6-3

bank configuration for ethernet controller
6-10

bank configuration for serial ports 6-8
DRAM memory map and configuration 6-

6
ethernet and serial port interrupts 6-11
external memory banks 6-4
FLASH memory map and configuration 6-

4
processor address map 6-11

hardware components 1-1
cables and power supply 1-1
evaluation board 1-1

host system requirements
PC 2-2
RS/6000 2-1
Sun 2-3

I
I/O control 9-9, 9-13
IBM Embedded Systems Solution Center xxvi
initialization 9-24

board bootstrap 9-25
Input/output Support Library 9-2
installing
ioLib.a library 9-4
ioLib_init() function 10-39

J
jumpers

setting 5-9

K
Kernel Abstract Data Types Library 9-2

L
library description
Index X-3

asyncLib.a 9-4
ioLib.a 9-4
ppcLib.a 9-5
rtx.o 9-3
rtxLib.a 9-3
tickLib.a 9-5

N
Network Support Library 9-2
NFS Support Library 9-2

O
oakenet_attach() function 10-40
opening asynchronous communication ports 9-

8
opening ESCC communication ports 9-12
OpenShell 9-2
OS Open kernel extensions 9-3
OS Open minimal kernel 9-3

P
PC host configuration 4-7

ethernet setup 4-14
ethernet setup for Windows 3.1 4-10
ethernet setup for Windows 95 4-12
ethernet setup for Windows NT 3.51 4-13
serial port setup 4-8

PC installation 3-4
RISCWatch debugger 3-6
software support package 3-4

PCMCIA ATA/IDE 9-2
PCMCIA card services/enabler 9-2
PCMCIA socket sevices 9-3
polled asynchronous I/O 9-10, 9-15
PowerPC Low Level Access Support Library 9-

2
PowerPC Low-Level Processor Access Support

Library 9-5
ppcAbend() function 10-41
ppcAndMsr() function 10-42
ppcCntlzw() function 10-43
ppcDcbf() function 10-44
ppcDcbi() function 10-45
ppcDcbst() function 10-46
ppcDcbz() function 10-47
ppcDflusfh() function 10-49

ppcEieio() function 10-50
ppcHalt() function 10-51
ppcIcbi() function 10-52
ppcLib.a library 9-5
ppclsync() function 10-53
ppcMfbear() function 10-54
ppcMfbesr() function 10-55
ppcMfbr0() - ppcMfbr7() functions 10-56
ppcMfbrh0() - ppcMfbrh7() functions 10-58
ppcMfcdbcr() function 10-59
ppcMfdac1() • ppcMfdac2() function 10-60
ppcMfdbcr() function 10-61
ppcMfdbsr() function 10-62
ppcMfdccr() function 10-63
ppcMfdcwr() function 10-64
ppcMfdear() function 10-65
ppcMfdmacc0() • ppcMfdmacc3() function 10-

66
ppcMfdmacr0() • ppcMfdmacr3() function 10-68
ppcMfdmact0() • ppcMfdmact3() function 10-69
ppcMfdmada0() • ppcMfdmada3() function 10-

70
ppcMfdmasa0() • ppcMfdmasa3() function 10-

71
ppcMfdmasr() function 10-72
ppcMfdsisr() function 10-75
ppcMfesr() function 10-73
ppcMfevpr() function 10-74
ppcMfgpr1() function 10-77
ppcMfgpr2() function 10-78
ppcMfiac1() function 10-79
ppcMfiac2() function 10-80
ppcMficcr() function 10-81
ppcMficdbdr() function 10-82
ppcMfiocr 10-83
ppcMfiocr() function 10-83
ppcMfmsr() function 10-84
ppcMfpbl1() function 10-85
ppcMfpbl2() function 10-85
ppcMfpbu1() function 10-86
ppcMfpbu2() function 10-86
ppcMfpit() function 10-88
ppcMfpvr() function 10-89
ppcMfsgr() function 10-90
ppcMfsprg0() • ppcMfsprg3() function 10-91
X-4 403 EVB User’s Manual

ppcMfsrr0() function 10-92
ppcMfsrr1() function 10-93
ppcMfsrr2() function 10-94
ppcMfsrr3() function 10-95
ppcMftb() function 10-96
ppcMftcr() function 10-97
ppcMftlbhi() function 10-98
ppcMftlblo() function 10-99
ppcMftsr() function 10-100
ppcMfutb() function 10-101
ppcMfzpr() function 10-102
ppcMtbesr() function 10-103
ppcMtbr0() - ppcMtbr7() functions 10-104
ppcMtbrh0() - ppcMtbrh7() functions 10-106
ppcMtcdbcr() function 10-107
ppcMtdac1() function 10-108
ppcMtdac2() function 10-109
ppcMtdbcrar() function 10-110
ppcMtdbcrsr() function 10-111
ppcMtdccr() function 10-112
ppcMtdcwr() function 10-113
ppcMtdmacc0() function 10-114
ppcMtdmacr0() • ppcMtdmacr3 functions 10-

115
ppcMtdmact0() • ppcMtdmact3() functions 10-

116
ppcMtdmada0() • ppcMtdmada() functions 10-

117
ppcMtdmasa0() • ppcMtdmasa3() functions 10-

118
ppcMtdmasr() function 10-119
ppcMtdsisr() function 10-121
ppcMtesr() function 10-120
ppcMtexier() function 10-122
ppcMtexisr() function 10-123
ppcMtiac1() function 10-124
ppcMtiac2() function 10-125
ppcMticcr() function 10-126
ppcMtiocr() function 10-127
ppcMtmsr() function 10-128
ppcMtpbl1() function 10-129
ppcMtpbl2() function 10-129
ppcMtpbu1() function 10-130
ppcMtpbu2() function 10-130
ppcMtpit() function 10-132

ppcMtsgr() function 10-133
ppcMtsprg0() • ppcMtsprg3() function 10-134
ppcMtsrr1() function 10-136
ppcMtsrr2() function 10-137
ppcMtsrr3() function 10-138
ppcMttb() function 10-139
ppcMttcr() function 10-140
ppcMttlbhi() function 10-141
ppcMttlblo() function 10-142
ppcMttsr() function 10-143
ppcMtzpr() function 10-144
ppcOrMsr() function 10-145
ppcSync() function 10-146
ppcTlbia() function 10-147
ppcTlbsx() function 10-148
processor_speed() function 10-149
ptrace

definitions B-4
RD_ATTACH B-5
RD_CONTINUE B-6
RD_DETACH B-7
RD_FILL B-8
RD_KILL B-9
RD_LDINFO B-10
RD_LOAD B-12
RD_LOGIN B-13
RD_LOGOFF B-14
RD_READ_D B-15
RD_READ_DCR B-16
RD_READ_GPR B-17
RD_READ_GPR_MULT B-18
RD_READ_I B-19
RD_READ_I_MULT B-20
RD_READ_SPR B-21, B-22, B-32
RD_STATUS B-23
RD_STOP_APPL B-24
RD_WAIT B-25
RD_WRITE_BLOCK B-26
RD_WRITE_D B-27
RD_WRITE_DCR B-28
RD_WRITE_GPR B-29
RD_WRITE_I B-30
RD_WRITE_SPR B-31
RL_LDINFO B-33
RL_LOAD_REQ B-34
Index X-5

MSGDATA structure B-1
overview B-1

Q
Queue Library 9-2

R
RAM Disk Library 9-2
Rate Monotonic Scheduling (RMS) Library 9-2
Real_time Executive 9-3
related publications xxvii
Remote Source Level Debug Library 9-2
resetting the EVB 5-10
Ring Buffer Library 9-2
ROM Boot Library 9-5
ROM monitor

accessing 7-8
bootp and tftp configuration for loads 7-2

PC 7-4, 7-6
RS/6000 7-2

communication features 7-2
menus 7-9

changing IP addresses 7-15
disabling the automatic display 7-21
displaying the current configuration 7-22
entering the debugger 7-19
exiting the main menu 7-28
initial ROM monitor menu 7-10
saving the current configuration 7-23
selecting boot devices 7-13
selecting power-on tests 7-11
using the ping test 7-17

source code 7-1
user functions 7-30

ROM Monitor Ethernet Interface Library 9-2
ROM monitor load format

boot header C-3
overview C-1
section types C-1

data section C-3
first section C-2
symbol section C-3

sections types
text section C-3

RPC Support Library 9-2
RS/6000 host configuration 4-1

ethernet setup 4-5
serial port setup 4-1

RS/6000 installation 3-1
RISCWatch debugger 3-4
software support package 3-1

rtx.o library 9-3
rtxLib.a library 9-3
Runtime Library 9-3

S
s1dbprintf() function 10-150
s1dbprintfapp() function 10-151
s2dbprintf() 9-15
s2dbprintf() function 10-153
s2dbprintfapp() function 10-154
sample applications

overview 8-1
resolving problems 8-10

bootp and tftp servers 8-11
using the ping test 8-10

ROM monitor flash image 8-2
using 8-4

Dhrystone benchmark 8-5
timesamp program 8-7
usr_samp program 8-6, 8-8

SCSI Support Library 9-3
Serial Port Support Library 9-4
Serial Support Library 9-3
software support package 1-2

application libraries and tools 1-3
Dhrystone benchmark 1-3
High C/C++ compiler 1-3
RISCWatch 400 debugger 1-2
ROM monitor 1-2

Software Timer Tick Support Library 9-5
Sun host configuration 4-13
Sun installation

RISCWatch debugger 3-9
software support package 3-6

Symbol Support Library 9-3

T
TCP/IP Protocol Support Library 9-3
Telnet Client Support Library 9-3
Telnet Daemon Support Library 9-3
terminal emulator 5-12
X-6 403 EVB User’s Manual

PC terminal emulation 5-13
Windows 3.1 & NT 5-13
Windows 95 5-13

RS/6000 terminal emulation 5-12
Sun terminal emulation 5-14

tickLib.a library 9-5
Timer Tick Support 9-3
timertick_install() function 10-156
timertick_remove() function 10-157
tools 9-25

eimgbld 9-30, 9-31
elf2rom 9-25
hbranch 9-28

Trivial File Transfer Protocol Library 9-3
TTY Support Library 9-3

U
Utilities 9-18

V
vs1dbprintf() function 10-158

W
writing calls on asynchronous ports 9-8, 9-13

X
XL C Compiler Support Library 9-3
Index X-7

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	How This Book is Organized
	Contacting the IBM Embedded Systems Solution Cente...
	Related Publications

	Overview of the 403 EVB
	1.1 Introducing the 403 EVB Hardware Components
	1.1.1 403 Evaluation Board
	1.1.2 Cables and Power Supply

	1.2 Introducing the 403 EVB Software Support Packa...
	1.2.1 ROM Monitor
	1.2.2 RISCWatch Debugger
	1.2.3 IBM High C/C++ Compiler
	1.2.4 OS Open Real-Time Operating System
	1.2.5 Dhrystone Benchmark Program
	1.2.6 Application Tools

	Host System Requirements
	2.1 RS/6000 Host System Requirements
	2.2 PC Host System Requirements
	2.3 SUN Host System Requirements

	Installing the EVB Software
	3.1 RS/6000 Installation (ELF and XCOFF file forma...
	3.1.1 EVB Software Support Package Installation - ...
	3.1.2 RISCWatch Debugger Installation - RS/6000

	3.2 PC Installation (ELF file format version only)...
	3.2.1 EVB Software Support Package Installation - ...
	3.2.2 RISCWatch Debugger Installation - PC

	3.3 Sun Installation(ELF file format version only)...
	3.3.1 EVB Software Support Package Installation - ...
	3.3.2 RISCWatch Debugger Installation - Sun

	Host Configuration
	4.1 RS/6000 Host Configuration
	4.1.1 Serial Port Setup - RS/6000
	4.1.2 Ethernet Setup - RS/6000
	4.1.3 ROM Monitor-Debugger Communication Setup - R...

	4.2 PC Host Configuration
	4.2.1 Serial Port Setup
	4.2.2 Ethernet Setup - PC
	4.2.2.1 Windows 3.1
	4.2.2.2 Ethernet Setup - Windows 95
	4.2.2.3 Ethernet Setup - Windows NT 3.51

	4.2.3 ROM Monitor-Debugger Communication Setup - P...

	4.3 Sun Host Configuration
	4.3.1 Serial Port Setup - SUN
	4.3.2 Ethernet Setup - SUN
	4.3.3 ROM Monitor-Debugger Communication Setup - S...

	403 EVB Connectors
	5.1 Serial Port Connectors
	5.2 Ethernet Connector
	5.3 RISCWatch JTAG Debugger and RISCTrace Connecto...
	5.4 Expansion Interface Connector
	5.5 Power Connector
	5.6 Setting the EVB Jumpers
	5.7 Resetting the EVB
	5.8 Critical Interrupt Switch
	5.9 Connecting the 403 EVB Hardware
	5.10 Using a Terminal Emulator
	5.10.1 RS/6000 Terminal Emulation
	5.10.2 PC Terminal Emulation
	5.10.2.1 Windows 3.1 and Windows NT Terminal Emula...
	5.10.2.2 Windows 95 Terminal Emulation

	5.10.3 SUN Terminal Emulation

	5.11 Booting the PowerPC 403 on the EVB

	403 EVB Hardware
	6.1 403 Embedded Controllers
	6.1.1 PowerPC 403 Embedded Controller
	6.1.2 403GC Embedded Controller
	6.1.3 403GCX Embedded Controller

	6.2 Memory Subsystems
	6.2.1 External Memory Banks
	6.2.2 Flash Memory Map and Bank Configuration
	6.2.3 DRAM Memory Map and Bank Configuration
	6.2.4 Bank Configuration (BR1) for the National 16...
	6.2.5 Bank Configuration (BR2) for the Ethernet Co...

	6.3 403 EVB Address Map
	6.4 Ethernet and Serial Port Interrupts
	6.5 The Ethernet Controller’s Network Address
	6.6 Accessing the Ethernet Controller

	403 EVB ROM Monitor
	7.1 ROM Monitor Source Code
	7.2 Communications Features
	7.3 Bootp and tftp Configuration to support ROM Mo...
	7.3.1 RS/6000 bootp and tftp configuration
	7.3.2 PC bootp and tftp configuration
	7.3.2.1 Automatic startup for Windows 3.1 and Wind...
	7.3.2.1 Automatic startup for Windows 95

	7.3.3 SUN bootp and tftp configuration

	7.4 Accessing the ROM Monitor
	7.5 ROM Monitor Operation
	7.6 Monitor Selections and Submenus
	7.6.1 Initial ROM Monitor Menu
	7.6.2 Selecting Power-On Tests
	7.6.3 Selecting Boot Devices
	7.6.4 Changing IP Addresses
	7.6.5 Using the Ping Test
	7.6.6 Entering the Debugger
	7.6.7 Disabling the Automatic Display
	7.6.8 Displaying the Current Configuration
	7.6.9 Saving the Current Configuration
	7.6.10 Setting the Baud Rate for S1 Boots
	7.6.11 S1 Boot
	7.6.12 Exiting the Main Menu

	7.7 ROM Monitor User Functions
	7.8 Flash Update Utility

	403 EVB Sample Applications
	8.1 Overview
	8.2 ROM Monitor Flash Image
	8.3 Using the Software Samples
	8.3.1 Building and Running the Dhrystone Benchmark...
	8.3.2 Building and Running the usr_samp Program
	8.3.3 Building and Running the timesamp Program
	8.3.4 Building and Running the mmu_samp Program

	8.4 Resolving Execution Problems
	8.4.1 Using the Ping Test on the ROM Monitor to Ve...
	8.4.2 bootp and tftp Servers (Daemons) for ROM Mon...

	8.5 Using OS Open Functions

	Application Libraries and Tools
	9.1 OS Open Libraries
	9.2 Using Libraries and Support Software
	9.2.1 Serial Port Support Library
	9.2.2 Boot Library(RAM)
	9.2.3 Input/Output Support Library
	9.2.4 PowerPC Low-Level Processor Access Support L...
	9.2.5 ROM Boot Library
	9.2.6 Software Timer Tick Support Library

	9.3 Device Drivers Supplied with the 403 EVB
	9.3.1 Asynchronous Device Driver
	9.3.1.1 Device Driver Installation
	9.3.1.2 Device Installation
	9.3.1.3 Opening Asynchronous Communication Ports
	9.3.1.4 Reading and Writing
	9.3.1.5 I/O Control
	9.3.1.6 Polled Asynchronous I/O

	9.3.2 Extended Serial Communication Controller Dev...
	9.3.2.1 Device Driver Installation
	9.3.2.2 Device Installation
	9.3.2.3 Opening ESCC Communication Port
	9.3.2.4 Reading and Writing
	9.3.2.5 I/O Control
	9.3.2.6 Polled Asynchronous I/O

	9.3.3 Ethernet Device Driver
	9.3.4 ROM Monitor Ethernet Device Driver
	9.3.4.1 ROM Monitor Ethernet Installation and Init...

	9.4 Utilities
	9.5 Environment Bringup and Initialization
	9.5.1 Board bootstrap
	9.5.2 Environment Initialization

	9.6 Tools
	9.6.1 elf2rom and xcofrom
	9.6.2 hbranch
	9.6.3 eimgbld
	9.6.4 nimgbld (XCOFF kits only)

	403 EVB Function Reference
	10.1 Attributes and Threads
	10.1.1 Async Safe Functions
	10.1.2 Cancel Safe Functions
	10.1.3 Interrupt Handler Safe Functions
	10.1.4 Callable from Application Thread Group Func...
	10.1.5 Processors

	10.2 403 EVB Functions
	async_init()
	biosenet_attach()
	clock_set()
	dbg_ioLib_init()
	dcache_flush()
	dcache_invalidate()
	dma_disable()
	dma_setup()
	dma_status()
	enet_disable_ipinput()
	enet_enable_ipinput()
	enet_native_attach()
	enet_recv_packet()
	enet_send_packet()
	escc_init()
	ext_int_config()
	ext_int_disable()
	ext_int_enable()
	ext_int_install()
	ext_int_query()
	fpemul_init()
	ioLib_init()
	oakenet_attach()
	ppcAbend()
	ppcAndMsr()
	ppcCntlzw()
	ppcDcbf()
	ppcDcbi()
	ppcDcbst()
	ppcDcbz()
	ppcDflush()
	ppcEieio()
	ppcHalt()
	ppcIcbi()
	ppcIsync()
	ppcMfbear()
	ppcMfbesr()
	ppcMfbr0() - ppcMfbr7()
	ppcMfbrh0() - ppcMfbrh7()
	ppcMfcdbcr()
	ppcMfdac1() - ppcMfdac2()
	ppcMfdbcr()
	ppcMfdbsr()
	ppcMfdccr()
	ppcMfdcwr()
	ppcMfdear()
	ppcMfdmacc0() - ppcMfdmacc3()
	ppcMfdmacr0() - ppcMfdmacr3()
	ppcMfdmact0() - ppcMfdmact3()
	ppcMtfmada0() - ppcMfdmada3()
	ppcMfdmasa0() - ppcMfdmasa3()
	ppcMfdmasr()
	ppcMfesr()
	ppcMfevpr()
	ppcMfexier()
	ppcMfexisr()
	ppcMfgpr1()
	ppcMfgpr2()
	ppcMfiac1()
	ppcMfiac2()
	ppcMficcr()
	ppcMficdbdr()
	ppcMfIocr()
	ppcMfmsr()
	ppcMfpbl1() - ppcMfpbl2()
	ppcMfpbu1() - ppcMfpbu2()
	ppcMfpid()
	ppcMfpit()
	ppcMfpvr()
	ppcMfsgr()
	ppcMfsprg0() - ppcMfsprg3()
	ppcMfsrr0()
	ppcMfsrr1()
	ppcMfsrr2()
	ppcMfsrr3()
	ppcMftb()
	ppcMftcr()
	ppcMftlbhi()
	ppcMftlblo()
	ppcMftsr()
	ppcMfutb()
	ppcMfzpr()
	ppcMtbesr()
	ppcMtbr0() - ppcMtbr7()
	ppcMtbrh0() - ppcMtbrh7()
	ppcMtcdbcr()
	ppcMtdac1()
	ppcMtdac2()
	ppcMtdbcr()
	ppcMtdbsr()
	ppcMtdccr()
	ppcMtdcwr()
	ppcMtdmacc0() - ppcMtdmacc3()
	ppcMtdmacr0() - ppcMtdmacr3()
	ppcMtdmact0() - ppcMtdmact3()
	ppcMtdmada0() - ppcMtdmada3()
	ppcMtdmasa0() - ppcMtdmasa3()
	ppcMtdmasr()
	ppcMtesr()
	ppcMtevpr()
	ppcMtexier()
	ppcMtexisr()
	ppcMtiac1()
	ppcMtiac2()
	ppcMticcr()
	ppcMtiocr()
	ppcMtmsr()
	ppcMtpbl1() - ppcMtpbl2()
	ppcMtpbu1() - ppcMtpbu2()
	ppcMtpid()
	ppcMtpit()
	ppcMtsgr()
	ppcMtsprg0() - ppcMtsprg3()
	ppcMtsrr0()
	ppcMtsrr1()
	ppcMtsrr2()
	ppcMtsrr3()
	ppcMttb()
	ppcMttcr()
	ppcMttlbhi()
	ppcMttlblo()
	ppcMttsr()
	ppcMtzpr()
	ppcOrMsr()
	ppcSync()
	ppcTlbia()
	ppcTlbsx()
	processor_speed()
	s1dbprintf()
	s1dbprintfapp()
	s2dbprintf()
	s2dbprintfapp()
	timertick_install()
	timertick_remove()
	vs1dbprintf()

	Programmable Logic Equations
	Program Trace Calls
	B.1 Overview
	B.2 MSGDATA Structure
	B.3 Ptrace Definitions
	B.3.1 RD_ATTACH (30)
	B.3.1.1 Request data
	B.3.1.2 Response data

	B.3.2 RD_CONTINUE (7)
	B.3.2.1 Request data
	B.3.2.2 Response data

	B.3.3 RD_DETACH (31)
	B.3.3.1 Request data
	B.3.3.2 Response data

	B.3.4 RD_FILL (105)
	B.3.4.1 Request data
	B.3.4.2 Response data

	B.3.5 RD_KILL (8)
	B.3.5.1 Request data
	B.3.5.2 Response data

	B.3.6 RD_LDINFO (34)
	B.3.6.1 Request data
	B.3.6.2 Response data

	B.3.7 RD_LOAD (101)
	B.3.7.1 Request data
	B.3.7.2 Response data

	B.3.8 RD_LOGIN (103)
	B.3.8.1 Request data
	B.3.8.2 Response data

	B.3.9 RD_LOGOFF (104)
	B.3.9.1 Request data
	B.3.9.2 Response data

	B.3.10 RD_READ_D (2)
	B.3.10.1 Request data
	B.3.10.2 Response data

	B.3.11 RD_READ_DCR (110)
	B.3.11.1 Request data
	B.3.11.2 Response data

	B.3.12 RD_READ_GPR (11)
	B.3.12.1 Request data
	B.3.12.2 Response data

	B.3.13 RD_READ_GPR_MULT(71)
	B.3.13.1 Request data
	B.3.13.2 Response data

	B.3.14 RD_READ_I (1)
	B.3.14.1 Request data
	B.3.14.2 Response data

	B.3.15 RD_READ_I_MULT (71)
	B.3.15.1 Request data
	B.3.15.2 Response data

	B.3.16 RD_READ_SPR (115)
	B.3.16.1 Request data
	B.3.16.2 Response data

	B.3.17 RD_READ_TLB(116)
	B.3.17.1 Request data
	B.3.17.2 Response data

	B.3.18 RD_STATUS (114)
	B.3.18.1 Request data
	B.3.18.2 Response data

	B.3.19 RD_STOP_APPL (113)
	B.3.19.1 Request data
	B.3.19.2 Response data

	B.3.20 RD_WAIT (108)
	B.3.20.1 Request data
	B.3.20.2 Response data

	B.3.21 RD_WRITE_BLOCK (19)
	B.3.21.1 Request data
	B.3.21.2 Response data

	B.3.22 RD_WRITE_D (5)
	B.3.22.1 Request data
	B.3.22.2 Response data

	B.3.23 RD_WRITE_DCR (112)
	B.3.23.1 Request data
	B.3.23.2 Response data

	B.3.24 RD_WRITE_GPR (14)
	B.3.24.1 Request data
	B.3.24.2 Response data

	B.3.25 RD_WRITE_I (4)
	B.3.25.1 Request data
	B.3.25.2 Response data

	B.3.26 RD_WRITE_SPR (112)
	B.3.26.1 Request data
	B.3.26.2 Response data

	B.3.27 RD_WRITE_TLB(117)
	B.3.27.1 Request data
	B.3.27.2 Response data

	B.3.28 RL_LDINFO (181)
	B.3.28.1 Request data
	B.3.28.2 Response data

	B.3.29 RL_LOAD_REQ(180)
	B.3.29.1 Request data
	B.3.29.2 Response data

	ROM Monitor Load Format
	C.1 Overview
	C.2 Section Types
	C.2.1 First Section
	C.2.2 Text Section
	C.2.3 Data Section
	C.2.4 Symbol Section

	C.3 Boot Header

	403 EVB Bill of Materials
	Index

