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Preface

Why study assembly language programming for the Radio
Shack TRS-807 Why when I was a youngster all we had was
Level I BASIC to work with and we did all right with that!
Well, BASIC, whether it is Level I, Level II, or Dise, is still
just as useful as ever. There are times, though, when the
absolute fastest possible processing is called for. That is one
case where assembly language reigns supreme. Programs run
at assembly-language speeds are up to 300 times faster than
their BASIC equivalents! Did you ever want to try your hand
at the most elemental type of coding to see if you could con-
struct a program in similar fashion to building electronic cir-
cuits from discrete components? Assembly-language will give
you that challenge. How about your memory requirements?
Do you find that you always require 4K bytes more than you
have in RAM? Assembly language will enable you to run a
program in 4K that requires 24K in BASIC. Did you ever
have an urge to see what is going on in all of those routines
in ROM or TRSDOS? You guessed it—assembly language
again.

The goal of this book is to take a TRS-80 user familiar with
some of the concepts of programming in BASIC and intro-
duce him to TRS-80 assembly language. The text does not
absolutely require a Radio Shack Editor/Assembler package,
but it will help. If your system will not support an Editor/
Assembler, then Radio Shack T-BUG can be used to key in
all of the programs in this book without assembling—we’ve
done that for you. We have designed the book to be highly
interactive. There are many programs that can be assembled
and loaded, or simply keyed in using T-BUG, and that illus-
trate the techniques of assembly-language programming as
they relate to the TRS-80. We have routines to write data to
the screen, to move patterns at high-speed, to graphically il-
lustrate a bubble sort, and even a routine to play music by
using the cassette output! Of course, you may also use the




book simply as a reference book for assembly-language rou-
tines. The last chapter has a dozen or so “standard” assembly-
language routines that can be used in your own assembly-
language coding.

Section I of this book covers the general concepts of TRS-80
assembly language. The TRS-80 uses a Z-80 microprocessor,
and the architecture of both the TRS-80 and Z-80 are covered
in Chapter 1. Chapter 2 talks about the instruction set of the
Z-80. There are hundreds of actual instructions, but they can
easily be grouped into a manageable number of types. Chapter
3 discusses the many addressing modes available for instruc-
tions in the Z-80. Assembly-language programming operations
and formats are covered in Chapter 4, while Chapter 5 covers
T-BUG and machine-language programming.

The second section of the book discusses various types of
programming operations and provides many examples of each
type. Chapter 6 shows how data is transferred within the
TRS-80, between memory and central processing unit and
between other parts of the system. Arithmetic and compare
operations are covered in Chapter 7; this chapter describes
how the Z-80 adds and subtracts, along with a description of
different types of number formats. Chapter 8 gives examples
of logical and bit operations and shifts, some of the most pow-
erful instructions in the Z-80. Chapter 9 describes how as-
sembly-language programs perform string manipulations and
process data in tables. Chapter 10 talks about input/ocutput
operations, one of the most mysterious (unjustifiably so) areas
of computer programming. The last chapter contains the pre-
viously mentioned common subroutines.

Two appendices provide a cross-reference of Z-80 operation
codes and instruction set. Appendix I lists the Z-80 instruction
set by function (add, subtract, etc.) while Appendix II pro-
vides a detailed alphabetized listing of all instructions.

If you suspect that assembly-language might be for you,
then by all means give it a try. You have nothing to lose but
your GOSUBs (and other BASIC statements). The author
hopes that you have as much fun in sampling the programs
in this book as he did in constructing them.

WILLIAM BARDEN, JR.

To Marguerite
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CHAPTER 1

TRS-80 and Z-80 Architecture

This chapter will discuss the architecture of the TRS-80,
with special consideration to the Z-80 microprocessor con-
tained within the TRS-80. What is a microprocessor? What
is a Z-80? Why do I need to know about it to program in as-
sembly language? Why are we asking so many hypothetical
questions? These and other questions will be answered in this
chapter as we attempt to unravel the mysteries of the archi-
tecture or general functional blocks of the TRS-80 system.
Stay tuned to this text. . . .

Functional Blocks

All computer systems are made up of three rather distinct
parts shown in Figure 1-1. The e¢pu, or central processing unit,
is the chief controller of the computer system. It fetches and
executes instructions, does arithmetic calculations, moves data
between the other parts of the system, and in general, controls
all sequencing and timing of the system. The memory of the
system holds a computer program or programs and various
types of data. The 1/0, or input/output devices of the system,
allow a user to talk to the computer system in a manner in
which he is familiar, such as a typewriter-style keyboard or
display of characters on a crt screen.

As a TRS-80 user, you're undoubtedly familiar with these
component parts. You have a nodding acquaintance with RAM
memory from upgrading your system to 16K and perhaps
more than just a casual relationship with an expansion inter-
face and disc. To enable us ‘to do assembly-language program-
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ming properly, however, we are going to have to get more
familiar with memory and I/0 and (much to the dismay of
our spouses, who are already computer widows or widowers)
rather intimately involved with the cpu portion of the TRS-80
system. In addition, in later chapters, we’re going to leave an
old friend, BASIC, and strike up a relationship with assembly-

language principles.

What Are All These Ones and Zeros?

Up to this point in your programming career, you have
probably used decimal values for such things as constants,

CENTRAL
PROCESSING
UNIT
{CPU)

MEMORY

INPUT/QUTPUT
DEVICES
(110)

TRS-30

CHIEF CONTROLLER

RAM OR ROM. HOLDS
PROGRAMS AND
DATA

ALLOWS USER TO
COMMUNICATE WITH
SYSTEM

Fig. 1-1. Functional blocks of the TRS-80.
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memory addresses, and POKEs. Assembly-language program-
ming makes extensive use of birnary data and hexadecimal
data. Don’t let these terms frighten you. They’re really more
simple than decimal data. Binary representation is a way of
expressing numeric values using the binary digits of 0 and 1,
rather than the decimal digits of 0 through 9. Binary digits
represent an ‘“on” or “off” condition. A wall switch is either
on or off. An indicator light is either lighted or unlighted. In
similar fashion, the transistors within the epu portion of the
TRS-80 are either on or off and hold binary values.

Now we know that in a decimal number such as 921 the 9
represents 9 hundreds, the 2 represents 2 tens, and the 1 rep-
resents 1 units, as shown in Figure 1-2. In a binary number,

102 POSITION

10! POSITION

100 POSITION

Fig. 1-2, Decimal notation.

1Xx1 = 1

2X10

20

9X 100 = 900
921

the position of the digits represent powers of two rather than
powers of fen. Instead of units, tens, hundreds, and other
powers of ten, a binary number is made up of digits represent-
ing units, two, four, eight, sixteen, and other powers of two, as
shown in Figure 1-3. Since there are only two binary digits,
the digit at each position represents either 0 or 1 times the
power of two for that position.

If the binary number is treated as groups of four binary
digits, the binary number can be converted into a hexadecimal
number. Hexadecimal means nothing more than powers of
sixteen. The groups of four bits represent 0000 through 1111.
Now, 0000 through 1001 correspond to the decimal digits 0
through 9, and the hexadecimal digits for 0000 through 1001
are similarly designated 0 through 9. This leaves the groups

13
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of bits from 1010 through 1111. When the hexadecimal system
was first proposed, one of the more obscure computer scien-
tists proposed that the remaining six groups be designated
actinium, barium, curium, dysprosium, erbium, and fernium.
Cooler heads prevailed, however, and the digits were named
A B C D,E, and F.

In general we’ll be working with groups of eight binary
digits or sixteen binary digits within the TRS-80. Binary digit
was long ago shortened to bit to prompt shorter lunches in
the computer science cafeteria when researchers started talk-
ing shop. Whenever bit is used, then, it will mean one binary
digit of either a 1 or 0. A group of four bits may be referred

2% OR 512 POSITION
28 OR 256 POSITION
27 OR 128 POSITION
26 OR 64 POSITION
25 OR 32 POSITION
24 OR 16 POSITION
23 OR 8 POSITION
22 OR 4 POSITION
2! OR 2 POSITION
20 OR 1 POSITION

1X1 = 1
0Xx2 = 0
0x4 = 0
1x8 = 8
1X16 = 16
0Xx3z
0X64
1X128
1 X 256
1 X512

I}
=)

li
o

128
256

512
921

Fig. 1-3. Binary notation.
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to as a hexadecimal digit of 0 through F. When this is done,
the suffix H is added. The symbol EH, therefore, represents
the hexadecimal digit E or the binary digits 1110. A group
of eight bits is commonly called a byte. A byte is made up of
two hexadecimal digits, since there are two groups of four
bits.

Don’t be too worried about the use of bits, bytes, and hexa-
decimal digits at this point. We’ll reiterate some of these basic
points as we go along in the text.

CPU, Memory, and 1/0

Generally, all elements of the TRS-80 work with binary
data. Each memory location, for example, is made up of
eight bits, and can represent values from 00000000 through
11111111, or zero through 255 decimal. I/0O devices such as
cassette tape or floppy disc communicate with the cpu by
transferring 8-bit bytes and converting between bytes of data
and bit streams. The cpu is similarly a binary digital device,
holding all data or control signals as discrete bits of infor-
mation.

Let’s talk a little bit (no pun intended) about the cpu. As
we mentioned before, the cpu is primarily concerned with
fetching and executing instructions. What are the types of
instructions that the cpu can perform? Obviously, it would
be very difficult to implement an instruction such as “if this
is Friday blink the screen cursor on and off at location 512.”
It would be possible to implement this instruction, but as you
might guess, it would be much more practical to implement a
basic set of general-purpose instructions such as “add two
numbers” or ‘“compare the result with 67.” As a matter of
fact the instruction set of the TRS-80 at this cpu level is
very similar to the instruction set of other microcomputers
and the instruction sets of even very large computers. The in-
struction set of the TRS-80 allows for adding two operands,
subtracting two operands, performing logical operations on
two operands (such as AND or OR), transferring 8 or 16 bits
of data between the cpu and memory or 1/0 devices, jumping
to another portion of the program (similar to GOTO or IF . ..
THEN), jumping to and returning from subroutines, and
testing and manipulating bits.

Every application, including the Level I and II BASIC pro-
grams in ROM, and extending to such applications as high-
speed video games and business payroll is made up of se-
quences of these rudimentary instructions such as adds, com-
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pares, and jumps. As a matter of fact, every program, even
those written in BASIC, ultimately resolves down to a se-
quence of these basic cpu instructions.

In older computer systems each of the component parts
literally occupied rooms. Today, almost the entire logic of the
cpu can be put on a single microprocessor chip about the size
of a postage stamp. The microprocessor chosen for the TRS-80
was the Z-80, originally designed by Zilog, Inc. The Z-80 is
a state-of-the-art (an engineering way of saying ‘“modern”)
microprocessor with a good instruction set. Since the c¢pu por-
tion of a microcomputer is now essentially its microprocessor
we'll look in detail at the Z-80 architecture in this chapter, and
at its instruction set in later chapters.

Memory within the TRS-80 system is made up of ROM,
RAM, and dedicated memory addresses. We're all familiar
with RAM memory. That’s the memory that holds our pro-
grams and data, whether they are BASIC programs or SYS-
TEM types (assembly language). The minimum amount of
RAM we can have is 4K, or 4096 bytes, and the maximum
amount we can have is 48K, or 49152 bytes, for a system with
an expansion interface. The term RAM stands for Random-
Access-Memory and simply means a memory that we can both
read from and write into. ROM memory, on the other hand, is
Read-Only Memory. ROM in the TRS-80 holds the Level I
or Level II BASIC interpreter, and occupies 12288 bytes in
the Level II case. Try as we might, we can’t POKE into the
ROM memory area. Each of the 61,440 locations of ROM and
RAM can hold one byte, or 8 bits, of data. Each of these 61,440
locations is assigned a location number. ROM is assigned loca-
tions 0 through 12287, and RAM is assigned locations 16384
through 65535.

Yes? A question from the back of the room? The gentleman
asks what locations 12288 through 16383 are used for? (These
TRS-80 owners—you can’t put anything over on them . . .)
Locations 12288 through 16383 are not used for memory ad-
dresses in the conventional sense. These are dedicated loca-
tions that the cpu uses to address such things as the line
printer, floppy disc, real-time clock and video screen. It turns
out that the video display is indeed a RAM memory, but the
remaining devices are only decoded as memory locations.
We'll explain further in later chapters. Figure 1-4 shows the
memory mapping for the TRS-80.

It’s important to know that data in memory can be either
an instruction for the cpu or data, such as a character for dis-
play. I see the same wise guy has his hand up! The cpu doesn’t

16



DECIMAL HEXADECIMAL
ADDRESSES ADDRESSES
0 LEVEL 1 LEVEL It OH
4095 BASIC ROM BASIC ___OFFFH
096 ROM T T 10004
UNUSED

12287 // _____ 2FFFH
12288 DEDICATED ADDRESSES 3000H
16383 VIDEO DISPLAY MEMORY ____3FFFH
16384~~~ " 4000H
20479 RAM | e | | L. 4FFFH
20480 % RAM 5000H

32K

RAM
A e e 7FFFH
32768 7 8000H

48K
RAM

Y i

49152 7%
65535 ____ 4 % /A _____ FFFFH

Fig. 1-4. TRS-80 memory mapping.

know which locations hold data and which hold instructions.
The cpu blindly goes ahead and if a data byte is picked up
instead of an instruction, it will attempt to execute the data
as an instruction. The result will probably be catastrophic, and
is a program bug (you're certainly familiar with bugs from
your BASIC programs—in assembly language they are even
more prolific). Data and programs are therefore intermixed
in memory at the programmer’s discretion (or indiscretion)
and the program should know how to jump around the data.
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I/0 devices may be considered in two parts. Firstly, there
is the physical 1/0 device, such as the cassette recorder, video
display, keyboard, line printer, or floppy dise. Secondly, there
is the I/0 device controller. The 1/0 device controller per-
forms an interfacing function between the epu (microproces-
sor chip) and the I/0 device. The controller matches the high
rate of data transfers from the cpu (hundreds of thousands of
bytes per second) to the I/0 device (50 bytes per second for
Level II tape cassette). The controller may also encode the data
coming from the cpu into special format (video format for
the display, for example) and provide a handshake function
between the cpu and I/0 device. (How are you, my name is
Bernie. Do you have the next data byte for me?) The I/0
device itself may be a device adapted to microcomputer use
such as the cassette recorder or video display or one specifi-
cally made for a microcomputer environment, such as the line
printer or floppy dise.

The Z-80: A Chip Off the Old Block

Now that we have an overview of the TRS-80, let’s look at
the internal workings of the Z-80, or at least those parts that

RESULT OF ARITHMETIC
OR LOGICAL OPERATION %

ARITHMETIC
AND LOGICAL
UNIT {ALU)
A J 4
FIRST | 2ND COFROM
REGISTER | REGISTER »
OPERAND | OPeRaND| ~ MEMORY OPERAND — memoRy
A F TG
~ 8B ¢ B’ C' | | GENERAL-PURPOSE
D E > | b REGISTERS
H L bl ]
! 1X |
I Iy I
{ . ) | | SPECIAL-PURPOSE
! I [ REGISTERS
: e :
L] R [ 1~
f
DATA TRANSFERS

BETWEEN REGISTERS
Fig. 1-5. Z-80 architecture.
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we, as assembly language programmers, will want to be
aware of. Figure 1-56 shows the cpu register arrangement, the
ALU, or arithmetic and logic wnit, and the data paths we
should be concerned about,

In general, all data in the TRS-80 and most data within
the Z-80 is handled in 8-bit, or one-byte segments. The Z-80
is called an “8-bit” microprocessor for this reason. The cpu
(Z-80) registers are either 8 bits or 16 bits wide, and most
manipulations within the cpu are done 8 bits at a time.

There are 14 general-purpose registers within the cpu, des-
ignated A, B, C, D, E, H, and L and the “primed” counter-
parts A’, B/, C’, I, E’, H’, and L’. Many of the arithmetic and
other instructions use the A register contents as one of the
operands, with the other operand coming from memory or an-
other register. For this reason, the “A” register can be thought
of as the “accumulator” register, which is an old term that is
still used today. In addition to being used separately as 8-bit
registers, there are several sets of register “pairs” that form
16-bit registers when the 8-bit registers are used together.
These are B/C, D/E, H/L, B’/C’, ’/’E, and H’/1/. The register
pairs are used to perform limited 16-bit arithmetic, such as
adding two 16-bit operands contained in two register pairs,
or to specify a memory address.

At any time only one set of the registers, prime or non-
prime, are active. Two Z-80 instructions select the current in-
active set (prime) to become active and put the currently
active (non-prime) into an inactive state. The instructions,
therefore, are used to switch between the two sets as desired.
A second set does not kave to be used, but simply makes more
register storage available if required.

The cpu registers are used to store temporary results, to
hold data being transferred to memory or I/0, and in general
to hold data that is being used for the current portion of the
program that is being executed. Data changes within the cpu
registers very rapidly as the program is being executed (tens
of thousands of times per second) so the cpu registers may
be thought of as a conveniently used, rapidly accessed, limited
memory within the cpu itself that holds transient data.

In addition to the general-purpose registers within the epu,
there are special-purpose registers. The first of these is the
PC, or Program Counter. The PC is a 16-bit register that
points to the current memory location holding the instruction
to be executed. We mentioned previously that there were 65536
memory locations that could be used on the TRS-80. A 16-bit
register may hold a range of values from 0000000000000000
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through 1111111111111111, or decimal 0 through 65536 (hexa-
decimal 0000H through FFFFH). The PC can therefore ad-
dress (point to) any memory location for the current instruec-
tion. Instructions to the cpu are coded into one, two, three, or
four bytes and are generally arranged sequentially in memory,
starting from “low” memory to “high” memory. Figure 1-6
shows a typical sequence of instructions. As each new in-
struction is “fetched” the PC is updated by adding the number
of bytes in the instruction to the contents of the PC. The
result points to the next instruction in sequence. When a
“jump” is executed, the new memory location for the jump is
forced into the PC, and replaces the previous value, so that
the new instruction from a new segment of the program is
accessed. If one could look at the PC in the TRS-80 as a pro-
gram was running, the PC would be changing hundreds of
thousands of times a second as sequences of instructions were
executed and jumps were made to new sequences.

MEMORY
LOCATION OF PROGRAM COUNTER
INSTRUCTION CONTENTS INSTRUCTION  BEFORE EXECUTION
4A00H 06H LDB.O 4A00H
4A0TH 00H
4A0ZH BIH OR A 4A02H
4A03H EDH SBC HL.DE 4A03H
4A04H 52H
4A05H FAH JP M.DONE 4A0SH
4AD6H 0CH
4A07H 4AH
4A08H 04H INC B 4A08H
4A09H C3H JP LOOP 4A0SH
4ADAH 02H
4A0BH 4AH
4A0CH 19H ADD HL,DE 4A0CH
- L™

Fig. 1-6. Typical sequence of instructions.

The SP, or Stack Pointer, is another 16-bit register that
addresses memory (Figure 1-7). In this case, however, the
SP addresses a memory stack area. The memory stack area
is simply a portion of RAM used by the program as temporary
storage of data and addresses of subroutines during subrou-
tine calls. As the SP is 16 bits, any area of memory could
conceivably be used, as long as it was RAM and not ROM. In
practice, high areas of RAM memory are used, as the stack
builds down from high memory to low memory. In a 16K
RAM system, for example, the stack might start at 32767
(don’t forget about that initial 16384 ROM and dedicated
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MEMORY

HIGH
ADDRESSES
STACK POINTER
15 0
/ ADDRESS OF “TOP OF STACK "
“TOP OF STACK"
STACK
BUILDS
DOWN
LOW
ADDRESSES

Fig. 1-7. Memory stack.

memory area) and build downward. Well, it appears that the
programmer in the back wants an explanation of the stack
action. We'll give a brief one here and give a more detailed
one in a later chapter. The stack is a LIFO stack, which stands
for “last-in-first-out.” A good analogy is a dinner plate stacker
found at some restaurants. The last dinner plate put on the
stack is the first taken off. As more and more plates are put
on the stack, the stack increases in size. If the reader can
visualize data being put on the stack in this fashion, it will
be somewhat similar to Z-80 stack action.

Two additional cpu registers, IX and IY, are used to modify
the address in an instruction. This permits indexing opera-
tions which allow rapid access of data in tables. Indexing op-
erations and the use of IX and IY will be discussed in detail
in Chapter 3.

The I and R registers are two registers that the reader
probably will not use in his TRS-80 system. The R register
is continually used by TRS-80 hardware to refresh the dy-
namic RAM memories used in the TRS-80 system. The 8-bit
value in the R register is continually incremented by one to
cycle the register from 0000000 through 1111111 and around
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again to provide a refresh count for dynamic memory refresh,
which restores the data in RAM. The 8-bit I register is used
for a mode of interrupts not currently implemented in TRS-80
hardware.

There are other cpu registers, of course, but the foregoing
registers are the only ones that are accessible by an assembly-
language program. The other registers in the Z-80 cpu hold
the instruction after it is fetched, buffer data as it is moved
internally and transferred externally, and perform other ac-
tions required for instruction interpretation, instruction im-
plementation, and system control.

The arithmetic and logic unit is the portion of the cpu
that, as the name implies, performs the addition, subtraction,
ANDing, ORing, exclusive ORing, and shifting of data from two
operands. The result of these operations generally goes to a
cpu register, although it may also go to memory in some cases.
A set of flags are set on the results of the arithmetic or logical
operation. For example, it is convenient to know when the
result is zero after a subtract operation. A zero flag is set if
this is the case. There are eight flag bits that are treated to-
gether as a cepu register, even though they are not used in
the same fashion. The flag registers are called F and F’. When
used in register pair operations the A and F or A" and F’
registers would be grouped together. The flags will be further
discussed in this section and in chapters dealing with specific
sets of instructions. For the time being Table 1-1 shows the
names and functions of the flags.

Table 1-1. CPU Flags

Name Function

Sign(3) Holds the sign of the result, O if positive, 1 if negative

Zera(Z) Holds the zero status of the result 1 if zero, 0 if non-zero

Half- Holds the half-carry status of the result, O if no half-

carry({H) carry, t if half-carry. Not generally accessible by pro-
gram.

Parity/ Holds the parity of the result or the overflow condition,

Overflow If used as parity, P = 0 if the number of one bits in the

(P/V) result is odd, or P = 1 if the number is even. If used as
overflow flag, V = 0 if no overflow or V = 1 if over-
flow.

Add/sub- Add or subtract condition for decimal instructions. Add

tract(N) = {, subtract = 1. Not generally accessible by program.

Carry(C} Holds the carry status of the result, O if no carry, 1 if carry
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Data flow between the cpu and remaining TRS-80 system
is shown in Figure 1-5. Almost all data within the system uses
the cpu. As a program is being executed, the instruction bytes
making up the program are continually being fetched from
RAM memory and placed into the cpu instruction decoding
logic. If an instruction is four bytes long, four separate mem-
ory fetches are made to RAM memory, with the PC pointing
to each sequential byte in turn. Once the instruction is de-
coded, additional memory accesses may have to be made to
get the operand to be used in the instruction. The instruction
to add the contents of the A register and location 16400
(4010H) calls for the cpu to not only fetch the instruction,
but to fetch the value found at location 16400 to be added to
the value found in the A register. Similarly, the results of
operations may be stored back into memory. In addition to
transferring instruction bytes and operand data between it-
self and memory, the epu also communicates with I/0 de-
vices such as the line printer and cassette. The cassette in
Level II BASIC operates at 50 bytes per second. Each byte
on a write (CSAVE) is held in a cpu register and written
to the cassette interface logic one bit at a time. When a print
operation on the system line printer is done (LPRINT), a
byte of status from the line printer is read into a cpu reg-
ister and checked. If the status indicates the line printer is
ready to receive the next byte, the byte representing character
data is transferred from a cpu register to the line printer.
Note that in both the cassette and line printer cases the data
may have been initially contained in a buffer in memory as
a cassette program or print line, but that it is transferred
from memory to the cpu register and from the cpu register
to the I/0 device a byte at a time. Although it is possible to
bypass the cpu and transfer data between the I/0 device and
memory using a Z-80 technique called direct-memory-access,
or DMA, the TRS-80 does not currently use this method and
we will not be describing it in this text.

In this chapter we've looked at the architecture of the
TRS-80 and especially at the internal architecture of the Z-80
microprocessor used in the TRS-80. In the next two chapters
we’ll investigate two more topics closely associated with the
Z-80, the Z-80 instruction set, and Z-80 addressing modes.
After that we’ll call a halt to theoretical discussions and get
our hands dirty (figuratively, anyway, unless you code with
a leaky pen) in learning how to use the assembler, editor,
and T-BUG.
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CHAPTER 2

Z-80 Instructions

In this chapter we will discuss the instruction set of the
TRS-80 system. The instruction set of the TRS-80 at the
assembly-language level is really the instruction set of the
Z-80 microprocessor in the TRS-80 as we pointed out in the
last chapter. If you have looked at the numeric list of the in-
struction set in the Radio Shack Editor/Assembler Manual
(26-2002), you may have been one of the recent wave of
trauma victims that have suddenly appeared all over the
country. There are many different combinations of instruc-
tions! (There are well over five hundred, as a matter of fact!)
This chapter, among other things, will attempt to prove that
this massive, confusing list can be reduced to a tolerable
number of basic instructions. It will take some effort to learn
about the various instruction types, and a little more effort
to learn about the addressing modes covered in the next chap-
ter, but refuse to be intimidated! There are hundreds of thou-
sands of assembly-language programmers in the country and
there is no reason you cannot be another.

The Z-80 Family Tree

One of the things that we might mention in passing con-
cerns the heritage of the Z-80 microprocessor. At many places
in the discussion of the instruction set in this book, the reader
may be prompted to say, ‘Why the devil did they do that?”
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One of the reasons that there are many different ways of doing
the same thing (say adding two operands) is related to the
predecessor of the Z-80, the 8080A, and its predecessor, the
8008. The 8008 is the grandfather of the Z-80. The 8008 grew
up in the early days of microcomputing, back in the early *70s
(this century). The 8008 was the first microprocessor on a
chip and had an instruction set of 58 instructions. Shortly
after the 8008 was introduced, another microprocessor, the
8080, was developed. The 8080 was a faster, more powerful
microprocessor than the 8008, and had an instruction set of
78 instructions. Recently, a third generation of micropro-
cessor was developed—the Z-80. To compete in the hectic
microprocessor marketplace, the 8080 included the 8008 in-

}

8080,8008 780
R‘L’;?g‘;“ggo INSTRUCTION SET
—_— 2-80 INSTRUCTIONS
8008 PRO- 8080 WILL NOT WORK ON
GRAMS RUN INSTRUCTION SET 080 |

ON 8080

8008 Z:80 OR 8080 IN-
INSTRUCTION SET STRUCTIONS WILL NOT
WORK ON 8008

|

Fig. 2-1. The Z-80 family tree.

structions in its repertoire, and the Z-80 includes the 8080
instructions in its repertoire. The reason for this downwards
compatibility is that existing programs can be executed on
the newer generations of microprocessors, saving costs on
software development. The situation for the instruction set
of the Z-80 is shown in Figure 2-1. All programs written for
both the 8008 and 8080 can be executed on the Z-80, assuming,
of course, that the limitations of the system are equal (such
as the same I/0 device addresses, memory layout, and so
forth).

In carrying through the instruction set of the 8008 and 8080,
the Z-80 instruction set duplicates the architecture and gen-
eral approach of its two predecessors, but adds many new in-
structions of its own. If the reader sees many ways of doing
the same thing in future chapters, therefore, it is probably
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related to the father’s approach, or even the grandfather’s.
Which approach is best, the experience of age, or the innova-
tion of youth? As in life, some of each.

" How Long Is an Instruction?

The answer to this, of course, is “long enough to reach the
memory.” Z-80 instructions are, in fact, one to four bytes
long with the average being about two bytes. This means that
in 4096 bytes of memory we can hold about 2000 assembly-
language instructions. This is quite a contrast to BASIC pro-
grams where each BASIC line probably takes up 40 characters
or so, allowing perhaps 100 BASIC lines. (Each assembly-
language instruction, of course, does much less than a BASIC
instruction, but does it much faster.) Many of the older 8080-
type instructions are one byte long, while the newer Z-80 type
instructions are four bytes long. The assembler program auto-
matically calculates the length of the instruction during the
assembly process, so you do not need to be concerned with
remembering instruction lengths.

Fig. 2-2. Typical assembly-language listing.

To give the reader some feel for instruction lengths in a
typical program we will look at a typical assembly-language
listing, shown in Figure 2-2. The listing is the output display
or printed output of the assembler porticn of the Editor/
Assembler after the assembly process.

The first column of the listing represents the location in
RAM where the program is to be stored. The value “4A00,”
for example, indicates that the “LD A,31H” instruction will
be put into memory locations 4A00H (18944 decimal) and

4A01H (it is a two-byte instruction). The next column is the
machine-language code of the instruction itself. For the “LD

26




A,31H” this amounts to two bytes (16 bits or four hexadecimal
digits). The “3E31” are the four hexadecimal digits repre-
senting the code. The next column is a line number for the
assembly, which is identical to the BASIC line numbers with
which you are familiar. The remaining columns represent the
assembly-language line for the instruction code; the first col-
umn is a label, the next is the operation code (a shorthand
representation of the instruction), the third is an operand
(in this case 31H (49 decimal). This format will be discussed
in detail in Chapter 4, so do not concern yourself with it at
this point. Do note the second column, however, and observe
how the instruction lengths vary from one to four bytes; each
two hexadecimal digits are one byte.

Wait a Microsecond . . .

Another interesting attribute that we should discuss is in-
struction speed. Generally, the longer the instruction, the
longer it takes. The reason for this is that for each byte
of the instruction one memory access must be made. This
amounts to the cpu transferring one byte of instruction data
into an internal register for decoding. To make one memory
access in the TRS-80 takes about .45 microsecond, or about
14 millionth of a second. Add to this time some additional
overhead for executing the instruction and for obtaining oper-
ands from memory, and we find that TRS-80 instructions
range from 2.3 microseconds to 13 microseconds, with the
average being somewhere around 5 microseconds. To contrast
assembly-language code with BASIC coding, consider this
BASIC program

100 FOR 1 =0 TO 255
200 NEXT !

The short loop above takes approximately 24 second to exe-
cute in BASIC. A corresponding assembly-language program

100 LOOP DEC C ;DECREMENT COUNT
200 JP ZLOOP JUMP IF NOT ZERQ

would take about 2 milliseconds, or two thousandths of a sec-
ond, approximately 350 times as fast!

The extremely fast speed of assembly-language programs
(when compared to higher-level languages such as BASIC)
makes this type of programming excellent for such applica-
tions as real-lime game simulations, fast business sorts, or
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any task that might take prohibitive amounts of time with
other methods.

Instruction Groups

Now that we’ve discussed some of the attributes of in-
structions, let’s look at how we might whittle down that set
of Z-80 instructions from sawmill size into at least a cord of
wood. We’'ll do this by dividing the instruction set into six
different groups:

Data Movement

Arithmetic, Logical, and Compare
Decision Making and Jumps
Stack Operations

Shifting and Bit Operations

1/0 Operations

Data Movement: Loads, Stores, and Transfers

Much of the time in any program, whether it is BASIC or
assembly language, is spent moving data from one place to
another. In assembly-language programs the cpu registers
are used for very temporary storage while RAM memory is
used for data that may be somewhat less volatile. If one looks
at the TRS-80 system components of epu, memory, and 1/0
devices, one can say that data in the cpu is transient, data in
memory is active for program usage, and data stored on audio
cassette tape or floppy disc is most permanent. In any event,
data is constantly being moved from cpu registers to other
cpu registers, from cpu registers to memory, from memory
to cpu registers, and from one memory area to another mem-
ory area.

The general term for moving data from memory to a cpu
register is “load.” Data is said to be loaded into a cpu register.
Remember, now, that the data we are talking about is operand
data rather than the data associated with the instruction op-
eration itself. The data associated with the instruction itself
is automatically brought into the cpu instruction decoding
logic in the course of normal program execution as the PC
(program counter) points to each instruction in turn. An
example of this difference would be the instruction “LD B,101”
which loads the value of 101 decimal into the cpu B register.

In many other microprocessors, the action of transferring
data from a cpu register to memory is called a “store.” In the
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Z-80 microprocessor of the TRS-80, however, the term load
is used to apply not only to transferring data from memory
to a cpu register, but also in transferring data from a cpu
register to memory. The instruction mnemoniec, or shorthand
symbol, for a load operation is “LD.” Any time you see an
“LD” on an assembly listing you know that data is being
moved between cpu registers or between cpu registers and
memory. The instruction

LD AB ;LOAD A WITH B

for example, takes the contents of cpu register B and puts
it into cpu register A, leaving the B register unchanged. This
last point is an important one: All loads copy data, rather
than transferring it. The source of the data remains un-
changed, whether it is in memory or a cpu register.

Another example of a load is the instruction

LD (4234H),A ;STORE A REGISTER INTO LOC 4234H

which takes the contents of the cpu A register and copies it
into RAM memory location 4234H (16948 decimal).

We mentioned in Chapter 1 that the general-purpose cpu
registers were 8 bits wide, but that sometimes they were
grouped as register pairs of 16 bits. To refresh your memory
(no pun intended), the register pairs were combinations of
cpu registers B and C, D and E, and H and L. The load in-
structions give us the ability to move data one byte or two
bytes at a time using single registers or register pairs.

When data is moved one byte at a time, the eight bits of
the source operand are copied into the destination register or
memory location. Of course the bits are copied with the same
orientation. LoaDing the H register with 01100001 from the
L register produces 01100001 in the H register, and not an-
other arrangement of bits.

When data is moved two bytes at a time, the 16 bits are
copied from one register pair to another, or between a register
pair and fwo memory locations. Let’s see how this works.
Suppose that in register pair H,L. we have the decimal value
1000. Now if we convert decimal 1000 into binary we have

BIT BIT BIT BIT BIT BIT BIT BIT
7 6 5 14 3 2 1 0

cjotojojojlo]1 1 H (MOST SIGNIFICANT)

1|1 lL{of1 (0010 L {(LEAST SIGNIFICANT)

Fig. 2-3. Register pair data arrangements.




0000 0011 1110 1000, after we have added the necessary lead-
ing zeros to make up 16 bits. Figure 2-3 shows how that value
is arranged in the H and L registers. The upper 8 bits (one
byte) is in H and the lower 8 bits is in L. The same arrange-
ment holds true for B and C and D and E. B and D are always
the upper, or most significant, registers, while C and E are
always the lower or least significant registers.

That’s easy enough to remember if you think of BC, DE,
and HL and remember H(igh) and L(ow). And to answer
that same heckler from the back of the room, yes, this was
the reason for the 8008 designation of “H’’ and “L.” But what
happens in memory when a register pair is stored? When a
register pair such as H and L are stored by the instruction

LD (4AQ0AH),HL STORE H AND L INTO 18954

the low or least significant register, in this case L, is stored
in the memory location specified, in this case 4A0AH. The
high, or most significant register, in this case H, is stored in
the next memory location, in this case 4A0BH (18955). This
arrangement of low order byte followed by high order byte
holds true for all types of data within a Z-80 assembly-lan-
guage program. As one would expect, data loaded from mem-
ory into a cpu register pair restores the register pair in the
same fashion. Figure 2-4 shows the store described above.

H (HIGH)
L (LOW)
"LD (4A0AH)HL"
4ADAH {LOW)
4A0BH {RIGH)

Fig. 2-4. Memory arrangement for 16-bit data.

A group of load instructions called the block moves enables
from one to 65536 bytes to be moved in a single instruction,
or in a very few instructions. These load instructions avoid
the overhead of moving data in a long sequence of instructions
and are a powerful feature of the Z-80. The four block moves
will be discussed in detail in Chapter 6.

We won’t attempt to list all of the possible loads in this
section. Many of them are dependent upon the addressing
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Fig. 2-5. Data transfer paths.

mode used in the instruction, which will be covered in Chapter
3. What we will do, however, is to illustrate the ways in which
8- or 16-bit data can be transferred from one part of the sys-
tem to another by the use of LD instructions. Figure 2-5 shows
the paths and indicates the types of instructions available in
the Z-80 to perform the transfers.

Arithmetic, Logical, and Compare

The worst part in understanding this group is the pronun-
ciation of “arithmetic.” Contrary to what you learned in P.S.
49, the adjective is pronounced so that the last two syllables
rhyme with the last two of “charismatic.” Novice program-
mers have been dismissed on the spot for the use of the com-
mon pronunciation! This group includes instructions that add
and subtract two operands, instructions that perform logical
operations of ANDing, ORing, and exclusive ORing, and compare
instructions, which are essentially subtracts.

The most common type of arithmetic is the simple ADD in-
struction. Suppose that we have two 8-bit operands (two one-
byte operands) in cpu registers A and B, as shown in Figure
2-6. When the instruction

ADD AB ;ADD REGISTER B TC REGISTER A
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is executed in the program, the contents of register B (the
source register) will be added to the contents of register A
(the destination register) and the result will be put into the
A register with the B register unchanged. All 8-bit arithmetic
and logical instructions operate in the same fashion; the
result always goes to the A register, and one of the operands
must have originally been in the A register. The instruction

SUB (HL) ;SUBTRACT LOCATION 4400H(HL) FROM A

takes the contents of location 4400H, subtraects it from the
contents of the A register, and puts the result into the A reg-
ister, leaving the contents of location 4400H unchanged.
When an arithmetic instruction such as an add or subtract
is executed, the flags are set on the results of the instruction.
If the result of the subtract were zero, for example, the “Z”
flag would be set to a 1; if the result were non-zero, the Z flag
would contain a 0. A decision could then be made by a jump-
type instruction later in the program that would test the state
of the zero and other flags. The flags will be further discussed
in the appropriate material for the instruction group. Except
for the two special adds and subtracts that add in the carry
flag, that’s about all there is to the 8-bit arithmetic group. As
with the loads, there are many varieties of addressing modes
that may be used, and these are discussed in the next chapter.
The logical instructions in this group work in similar fash-
ion to the arithmetic instructions. An 8-bit operand from

BEFORE ADD

BIT BIT BIT BIT BIT BIT BIT BIT
7 6 5 4 3 2 1 0

ojo v o 1ioO (1] 1| A@43

0100} 1 1 1]0] 1] BQ29

AFTER ADD

ol 110101000 AT

ojojo0f1 1o 1| B2y

Fig. 2-6. Sample ADD operation.
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memory or another register is used in conjunction with the
contents of the A register. The result is put into the A reg-
ister and appropriate flags are set. The functions that may be
performed are ANDing, ORing, and exclusive ORing. You may
be familiar with these functions from BASIC. When two bits
are ANDed, the result bit is a one only if both operand bits are
a one. When two bits are oRed, the result is a one if either
bit or both bits are ones. When two bits are exclusive ORed,
the result bit is a one if and only if one or the other bit is a
one, but not both. For 8-bit operands, each bit position is con-
sidered one at a time, as shown in Figure 2-7. Here again
there are many addressing modes possible.

AND DPERATION

1 rpol o1 |t ] 0] 0 AREGISTER

l1{1}o0jo0]1]0] 0] 0| AMAFER
OR OPERATION

11 ]Jolofr}j1|ojo0]A

LY 1111 1] 0| A(ATER
EXCLUSIVE OR OPERATION

1 1{0]0]1 1|00 A

010]1 110 1 1 | 0| A(AFTER)

Fig. 2-7. Logical operations.

Compare instructions are very similar to subtracts. An
operand from memory or another cpu register is subtracted
from the contents of the A register. The flags are set as in
the subtract. The result, however, does not go to the A register,
but is discarded. A compare allows testing of an operand by
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setting the flags without destroying the contents of the A
register, a useful instruction. There is only one compare, the
“CP” instruction, which again has several addressing modes.

In addition to the single compare instruction, there is a
block compare set of instructions that aliows an 8-bit com-
pare of one operand to a specified block of memory locations.
This is one of the most powerful features of the Z-80, as it
is much faster than a software routine that does the same
thing, as would have to be implemented in the 8080A. There
are four block compare instructions and these will be dis-
cussed in detail in Chapter 6.

The instructions in the above discussion were 8-bit instruc-
tions; that is, they operated with two 8-bit operands. The A
register was used in these instructions as an accumulator to
hold the results of the operation. The Z-80 also allows a 16-bit
add or subtract operation that uses the HL register pair in
much the same way as the A register is used in 8-bit opera-
tions. In these adds and subtracts, a 16-bit operand from an-
other register pair is added or subtracted from the contents
of HL, with the result going to HL. The flags are set on the
resuit of the add or subtract. The Z-80 also allows index reg-
ister IX or IY (two 16-bit registers) to be used as the destina-
tion register in place of HL.

The remaining instructions in this group are the increments
(INC) and decrements (DEC). These instructions are useful
for adding one or subtracting one from the contents of a epu
register, a cpu register pair, or a memory location. Almost
all assembly-language programs are continually incrementing
or decrementing a count used as a loop control, index, or sim-
ilar variable, and the INCs and DECs are more efficient than
adding one or subtracting one by an ADD or SUB. Either
single cpu registers, register pairs, or memory locations (8
bits) may be altered by these instructions.

Figure 2-8 illustrates the actions of the arithmetic, logical,
and compare instructions and shows which cpu registers are
used for operands and what types of instructions are available.

Decision Making and Jumps

There are only two ways to alter the path of execution of
a program from BASIC, unconditionally or conditional upon
some result, such as a variable being greater than a specified
value. The Z-80 instructions “JP” and “JR” differ only in
addressing mode and cause an unconditional jump to a speci-
fied location, exactly identical in concept to a BASIC GOTO.
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Fig. 2-8. Arithmetic, logical, and compare action.

Of course, in assembly-language jumps, a memory location is
specified, rather than a line number. The instruction below
will jump fo Level I or II ROM

JP 066DH JUMP TO ATTENTION

A similar type of jump can be made conditional upon the set-
tings of the cpu flags. The flags, in turn, hold the conditions of
an add, subtract, shift, or other previously executed instruec-
tions. These conditions are the conditions described in Chapter
1—zero (or non-zero) result, positive or negative result, two
types of carry, parity (essentially a count of the number of
“one” bits in the result), and overflow. The conditional jumps
are the only way the program has of testing the results of an
arithmetic or other operation, except for the conditional calls,
which are very similar. Let’s see how they work:

cP 100 ;COMPARE A REGISTER TO 100
JP Z,42AAH JUMP TO 17066 IF A = 100
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The two instructions above cause the assembly-language
program to jump to location 17066 (42AAH) if the contents
of the A register are equal to 100. The CP (compare) instruc-
tion subtracts 100 from the contents of the A register. The
zero flag is set if the result is zero, that is, if the A register
holds 100 before the compare. If the A register does not con-
tain 100, a value other than zero will result and the zero flag
will not be set. The jump to 42AAH is made, therefore, only
if the A register contained 100.

The Z-80 instruction set also has a number of instructions
that are equivalent to BASIC GOSUBs. These are the CALL
instructions. CALLs are used to conditionally go to a subrou-
tine on the settings of the same flags used by jumps, or to
unconditionally transfer control to a subroutine. When the
transfer is made, the cpu remembers where the return point
is in similar fashion to saving the next BASIC line number.
The following instructions CALL a subroutine to calculate
the number of TRS-80 systems (why not?) and to return at
location 4801H

(47FE) CALL 4COOH ;CALCULATE NUMBER OF SYSTEMS
(4801) ADD 2 ;ADD IN MINE AND URSULA‘S

Note that in the above code the first instruction was located
at location 47FEH, and that the next was located at 47TFEH
plus the length of the CALL (3 bytes), or 4801H (we’ll get
the reader used to hexadecimal yet!). While there are a few
special jump instructions not mentioned, 99% of all jump and
CALLS will be similar to those shown above.

Of course, as in BASIC, every CALL must have a RETurn.
The Z-80 has two types of returns (that’s correct!) condi-
tional and unconditional. The unconditional RET always re-
turns to the location following the CALL, while the condi-
tional RET returns conditionally upon the flag settings. And
that's about all there is to jumps, CALLs, and returns!

Stack Operations

The stack area of memory was mentioned in the first chap--
ter. Recall that the stack area was used to store data and
addresses on a temporary basis. The first use of the stack by
Z-80 instructions has already been mentioned; CALLs auto-
matically save the return address in the stack as the call is
implemented. Let’s look again at the last example, the CALL
to location 4CO0H instruction which was located at RAM
memory location 47TFE. When the CALL is made the PC (pro-
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BEFORE CALL
Mo O1H o~ HERE AFTER CALL
WHERE 48H
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CALL 4C00H === c72lICTION CAUSES CONTENTS
47FFH 00H OF PC TO BE PUT IN STACK
4800H
800 4CH PC AT CALL
4801H (NEXT INSTRUCTION) <—— INSTRUCTION
POINTS HERE
L (4801H)

Fig. 2-9. CALL stack action.

gram counter) points to location 4801H, the next instruction
(the PC is updated before the instruction is executed). As
the CALL is implemented, the contents of the PC is pushed
into the stack as shown in Figure 2-9. Each time the stack
is used, of course, the SP (stack pointer) register is decre-
mented to point to the next location to be used, or the top of
stack. Why is the next location called the fop of stack, when
it looks like the bottom of stack? It's all in how one looks at it.
The reader may optionally turn the book upside down to get
a better picture of this action. When the RETurn associated
with the CALL is executed later in the program, the return
address is retrieved from the stack and put into the PC to
effectively cause a jump to the return address as shown in
the figure.

CALLs and RETs cause automatic stack action. The pro-
grammer may, however, temporarily store data in the stack
by executing a PUSH instruction. PUSHes store a register
pair into the stack area as shown in Figure 2-10. The data
may be restored into the same or different register pair by a
POP instruction. Of course the data comes off the stack when
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a POP is executed in the same fashion it went in by the PUSH,
with the most significant byte going to the high-order register
(H, B, D, or the high-order portion of IX or IY) and the low-
order byte going to the low-order register (L, C, E, or the
low-order portion of IX or IY). The following two instruc-
itions PUSH the contents of register pair BC onto the stack,
and then POP the data into register pair HL. This is a way
of transferring data between BC and HL, as there is no other
instruction that is able to perform this action.

PUSH BC  ;CONTENTS OF BC TO STACK
POP HL  ;HL NOW HAS CONTENTS OF BC
In addition to use of the stack by CALLs, RETs, PUSHes,
and POPs, certain other instructions associated with inter-
rupts and the interrupts themselves cause use of the stack.
We will not be illustrating the use of interrupts in any detail,
since they go beyond the scope of most assembly-language
applications.

Shifting and Bit Operations

In the instructions discussed so far, we've covered a lot
of ground. In fact, any computer program we want could be

T T STACK POINTER POINTED
HERE BEFORE PUSH
gnTEAIV(I:(')(RY /— AND POINTS
HERE AFTER PUSH
(SOME- 20H e
mHERE 30H M
RAM)

ES5H
PUSH HL ————— EXECUTION OF THIS

(NEXT INSTRUCTION) INSTRUCTION CAUSES
CONTENTS OF HL
TO BE PUT IN STACK

o — T

EENETE
H L

Fig. 2-10. PUSH stack action.
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written in just those instructions (in fact, any computer pro-
gram could be implemented in an eight or ten instruction
machine, if it were carefully designed!). The instructions in
this group, however, are niceties that make handling of bits
and fields somewhat easier.

The shift instructions allow a single register to be shifted
right or left. The shifting action can be visualized as pushing
in another bit at the right or left end of a cpu register. As the
cpu register can only hold 8 bits, a bit is “pushed out” from
the other end of the register. When a zero is pushed into the
end and the bit that is pushed out is discarded, the shift is
said to be a “logical” shift. When the bit pushed out is car-
ried around and pushed into the register from the other end,
the shift is said to be a “circular” shift or a “rotate.” The Z-80
has both logical shifts and rotates and also has a type called
an “arithmetic” shift used for working with signed numbers.
All of the shifts can be used with the A register, and some
can be used with other cpu registers and with memory loca-
tions. Figure 2-11 shows some common shifts in the Z-80.

ROTATE SHIFT
§ 16543210 DATA "RECIRCULATES” FROM
- ONE END TO THE OTHER.
RIGHT OR LEFT ROTATION
POSSIBLE.
LOGICAL SHIFT
76543210 DATA PUSHED OUT ONE
0 —a . END IS LOST. ZEROS

LOST PUSHED INTQ GTHER END.
RIGHT OR LEFT SHIFT

ARITHMETIC SHIFT POSSIBLE.
76543210

> . SIGN BIT (7) IS RETAINED.
LOST  REST OF DATA SHIFTED
RIGHT INCLUDING BIT
T INTO BIT 6.

Fig. 2-11, Shifts in the Z-80.

Shifts may be used for a variety of reasons in computer
programs including alignment of fields (subdivisions within
bytes), multiplication and division, testing of individual bits,
and computation of addresses. We'll say more about shifts in
Chapter 8.

Bit operations allow any bit within a cpu register or mem-
ory location to be tested, set to a one, or set to a zero. As
there are eight different bit positions that can be involved,
many cpu registers, and many different ways of addressing
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memory, it’s easy to see why there are so many different bit
instructions listed in the list of all Z-80 instructions. However,
as with a lot of the instructions, they all resolve down to only
three types, BIT, SET, and RES, which perform the test, set,
and reset functions. These three are also covered in Chapter 8.

I/0 Operations

The last group of instructions we’ll discuss here are the
I/0 instructions. There are really only two in the Z-80, IN
and OUT. All the IN does is to transfer one byte of data into
a cpu register from an external device, such as cassette tape.
The OUT outputs one byte of data from a cpu register to an
external device. Although the original register used for these
was the A register, the Z-80 added the use of other cpu reg-
isters as the source (OUT) or destination (IN) for the input/
output operation. Another powerful feature the Z-80 added to
the basic 8080A instruction set was the ability to perform a
block input/output where the Z-80 will automatically transfer
a block of data into an input area or output a block of data
from an output area. The input “areas” in this type of opera-
tion are called I/O buffers or simply “buffers.” More about
input/output operations in Chapter 10.

A Program of a Thousand Locations
Begins With the First Bit

The above homily was found inscribed on the first real dig-
ital computer, Babbage’s Folly of a hundred years ago. It
still holds true today. None of the instructions discussed here
is that sophisticated; most are very easy to comprehend. If
you will believe that and the idea that there are many ways
to write a program that will do a specific task, you are pre-
pared to advance into the ranks of assembly-language pro-
grammers. In the next chapter we will look at the last tedious
description of the Z-80 instructions, their addressing modes.
We will then be in a position to “lay down some code” and
vindicate Babbage.




CHAPTER 3

Z-80 Addressing

The last chapter covered the types of instructions that are
available in the Z-80 of the TRS-80. We warned the reader
not to be intimidated by the many different instructions as
they could really be grouped into a much smaller number. In
this chapter we will talk about another factor that makes life
interesting for Z-80 programmers— the wide variety of ad-
dressing modes that are available in the Z-80. Many instruc-
tions have several types of addressing modes, and the choice
must be made of which one to use to do a certain task. Here
again the reader shouldn’t be frightened by the addressing
modes available, as they are all readily understood.

Why Not One Addressing Mode?

If all instructions performed different functions, but worked
with operands from the same place and operands of the same
number, we could, in fact, have one addressing mode. How-
ever, we know from the last chapter that this is not true. We
can add two operands from two cpu registers or one operand
from a cpu register and one from memory. We can add two
register pairs. Obviously the ADD instructions for these cases
must be different, as they specify different locations for the
operands. There are a few other instructions that we did not
mention in Chapter 2 that require 7o operands. One example is
SCF, which sets the carry flag. It would be foolhardy (or at
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least ill advised) to attempt to make the instruction format
for this type of instruction the same as the instruction format
for an ADD.

To further complicate the addressing situation, we must
consider the grandfather and father of the Z-80, the 8008 and
8080A, and their addressing modes. The 8008 had a very
limited addressing capability. To address an operand in mem-
ory, the HL register pair had to be loaded with the 16-bit value
representing the operand’s location. If a load of the A register
from memory location 20AAH (8362) was to be performed,
the HL register pair was first loaded with 20AAH, and then
a “LD (HL)” instruction was executed to perform the load.
The HL register pair was used in this fashion as a register
pointer to memory for most instructions involving an operand
in memory. The 8080A, however, improved upon this type of
addressing by allowing direct addressing of memory for
certain instructions. With the 8080A, the instruction “LD
A,(20AAH)” could be executed to directly load the A register
with the contents of location 20AAH, without having to first
point to that location with the HL register. Of course the
8080A retained the earlier addressing mode of the 8008. The
Z-80 further expanded upon the 8008 and 8080A addressing
capability by adding indexed addressing and other addressing
modes, which permitted such operations as “LD A, (IX+123)”
where index register IX points to the start of a table at
20AAH, and the “+123” refers to the 124th entry in the table.

“And that, Jimmy, is why we have the various addressing
modes in the Z-80 today.” “Gee, Mr. Computer Science, could
we look at the Z-80 addressing modes in more detail now ?”’
I thought he’d never ask . ..

Implied Addressing: No Addressing at All

The first of the addressing modes is implied addressing.
This mode is used for simple instructions that require no oper-
ands, such as the SCF instruction which sets the carry flag.
Other instructions of this type are CCF, Complement Carry
Flag, DI, Disable Interrupts, EI, Enable Interrupts, HALT,
Halt CPU, and NOP, No Operation, to name a few more. Be-
cause these specify a simple action and no operand, they can
generally be held in an instruction of one byte, as is shown
in Figure 3-1. Every time the cpu encounters the SCF instruc-
tion it will set the carry flag in the cpu and fetch no more
bytes; the cpu knows the SCF instruction is only one byte
long, as it knows the lengths of all other instructions.
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CARRY
FLAG

ACTION: 1 —™

BIT BIT BIT BIT BIT BIT BIT BIT
7 6 5 4 3 2 1 0

010 1 11011 1 1 BYTE 0

8 BITS = 1 BYTE
SET CARRY FLAG (SCF) = 00110111
BIT CONFIGURATION IN ONE BYTE

Fig. 3-1. Implied addressing.

Immediate Addressing

In immediate addressing the operand is contained within
the instruction itself, rather than in a memory location. This
type of addressing is used to load or perform arithmetic or
logical operations with constants. Suppose we want to add 23
to the contents of the A register. One way to do this would
be to have the value of 23 in a memory location and then per-
form the ADD as in

LD B.A ;MOVE A TO B
LD A (2111H) :2111H (B465) CONTAINS 23
ADD AB ;ADD A REG AND B REG

If we had to use many constants throughout the program,
however, the program would be filled with locations that held
constants of various values, and we’d have to recall where
each one was located.

Immediate addressing gets around this problem by allowing
an instruction such as

ADD A23 ;ADD 23 TO THE A REGISTER

The actual appearance of the “ADD A,23” is shown in Figure
3-2. The first byte of the instruection is the operation code of
the instruction, the code that tells the cpu what the instruction
is and how long it is (the implied type of instructions really
had a one-byte operation code). “Operation Code” has been
shortened to “opcode” (those long cafeteria lunches again).
In general, the first byte of an instruction in the Z-80 is the
opcode, but some instructions have two bytes as opcodes. The
second byte of the “ADD A,23” is the immediate date value
of 23 decimal or 17H. The data value is in the instruction it-

43



self, rather than in another memory location located far away
from the instruction.

Both 8-bit and 16-bit (one and two byte) immediate in-
structions are available in the Z-80. The one byte immediate
instructions load a register or allow arithmetic or logical op-
erations on the A register. Some samples are

LD H,100 ;LOAD H REG WITH 100
LD A, 0FBH ;LOAD A REG WITH —5
ADD A,50H ;ADD 50H (80) TO A REGISTER
AND A7 ;AND LOWER THREE BITS

The two byte immediate instructions in the Z-80 are used
to load register pairs with constants. The instruction

LD BC,3000 ;LOCAD BC WITH 3000

loads register pair BC with a constant value of 3000 decimal.
As two bytes are involved in the data, the immediate data
value in the instruction is contained in bytes 2 and 3 of the
instruction, as shown in Figure 3-3. Byte one is the opcode for
a “LD BC” type instruction. Note that the hexadecimal repre-
sentation of 3000, 0BB8H, is reordered least significant byte
first in the instruction. As we mentioned earlier, all 16-bit
data is handled in this manner in the Z-80. If you are doing
assembly-language programming, you will never have to

SAMPLE
action:  LoJoJofolefoliJ1] A= 3

+00010111 +2
%

(o]Jojo]i]1folt]o] A =26

OPCODE BYTE
11000110 = C6H

BIT BIT BIT BIT BIT BIT BIT BIT
7 6 5 4 3 2 1 0

L)1 1101001 110 BYTE O

0Ojo| 0] 1]0]|1 1 1 BYTE 1

IMMEDIATE
DATA VALUE
00010111 = 23,9 = 17H

BOTH BYTES TAKEN TOGETHER MAKE
UP AN "ADD A,23" INSTRUCTION

Fig. 3-2. Immediate addressing, 8 bits.

44




ACTION:
0000101110111000 = 30009

|

0PCODE BYTE
00000001 = 01K

BIT BIT BIT BIT BIT BIT BIT BIT
7 6 5 4 3 2 1 0

cjojojojofojofl1 BYTE 0

lL{ojtryp1rj1jo0joj]o BYTE 1

olofojol1]0o]1 1 BYTE 2

MOST SIGNIFICANT
BYTE

[OLeeLoL 1 Ta T T ol 1] 1[o]ol0] = 3000

LEAST SIGNIFICANT
BYTE

THREE BYTES TAKEN TOGETHER MAKE
UP A "LD BC.,3000" INSTRUCTION

Fig. 3-3. Immediate addressing, 16 bits.

worry about putlting data in the right order; the assembler
program will do it for you. When the assembler sees the “LD
BC,3000” it will generate a 3-byte instruction, with the data
reversed in the second and third bytes. If you are ‘“patch-
ing” code in machine instructions, however, or entering in-
structions in machine form (and there are some occasions
when this must be done), you must be aware of this format.

Register Addressing

When a program adds two operands from cpu registers, the
cpu knows that one of the operands (the destination) is in
the A register. The location of the second operand (the source)
must be coded in the instruction, however. Now, we have 14
general-purpose cpu registers, A, B, C, D, E, H, and L and
their primed equivalents. As only one set, the primed or non-
primed, is active at any given time, there are really only seven
registers that may be used in an ADD operation with the A
register. Does it sound reasonable to have a one-byte operation
code, followed by two bytes indicating the code for the cpu
register? Not at all. Since in three bits we can express the
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numbers 0 through 7 (000 through 111 binary), we can in
fact code those register names into a three-bit value contained
within the instruction itself. This code is called a field, since
it is smaller than a byte. Its use is shown in the “ADD A,D”
instruction of Figure 3-4 which adds the D register to the A
register. The register field value of 010 signifies that the D
register will be used in the ADD. Note that the instruction is
only one byte; that byte includes both opcode information and
the register field information.

SAMPLE
ACTION: [oJoJoJolul1fil1] A=15

+
(o] tfoJofofofofo] D =64

[ojt]ofof1]af1]1] A:*)‘B

BIT BIT BIT 8IT BIT BIT BIT BIT
7 B 5 4 3 2 1 0

1L1ojeo]0}po0]1l 0 | BYTEO

[ e

THESE BITS DEFINE  THIS FIELD DEFINES
THE OPERATION THE D REGISTER

THE EIGHT BITS TAKEN TOGETHER
DEFINE AN "ADD AD" INSTRUCTION

Fig. 3-4. Register addressing.

In addition to register fields that specify single cpu reg-
isters, certain instructions specify register pairs. There were
originally four register pairs in the 8080A, A and flags, B and
C, D and E, and H and L. Because of this many instructions
will have a two-bit field (not a value judgment) that is used
to specify one of the four original pairs. An example of this
would be the “ADD HL,BC” instruction which adds register
pair BC to register pair HL. As Figure 3-5 shows, a two-bit
field within the two-byte instruction is used to specify a code
of 00 for register pair BC.

With the expanded instruction set of the Z-80, however,
fields must also specify the additional 16-bit registers of IX
and IY, as shown in Figure 3-6. Here the instruction is an
“ADD 1Y,SP”, in which the contents of the 16-bit SP (stack
pointer) register is added to the IY register.
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SAMPLE .
ACTION: [00000001]00000000] 1Y =256y

+
[01000000J00000000] SP = 16384

. ¥
[01000001!00000000] 1Y = 166409

BIT BIT BIT BIT BIT BIT BIT BIT
I 6 5 4 3 2 1 0

0JoOfO O] 1001 BYTE 0

[N " A\, /

THESE BITS
(FIELD) DEFINE THE
BC REGISTER PAIR

THESE BITS
DEFINE THE
OPERATION

THE EIGHT BITS TAKEN
TOGETHER DEFINE AN
"ADD HL,BC” INSTRUCTION

Fig. 3-5. Register pair addressing.

Once again, the assembly-language programmer need not
be concerned with constructing the instruction with the proper
codes in the fields, but may infrequently need to investigate the
machine-language code spewed out by the assembler.

SAMPLE ‘
ACTION: [00000001]00000000] 1Y = 256

+
(01000000J00000000] SP = 16384,

. ¥
(01000001]00000000] 1y = 16640,

BIT BIT BIT BIT BIT BIT BIT BIT
7 6 5 4 3 2 1 0

1 1 1 1 1 110 1 BYTE 0

010 1 1 1 00 1 BYTE 1

-~
THESE BITS (FIELD)
DEFINE THE SP. THE
REMAINING 14 BITS

DEFINE THE OPERATICGN

THE TWO BYTES TAKEN TOGETHER
DEFINE AN “ADD IY, SP" INSTRUCTION

Fig. 3-6. Index register addressing.
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Register Indirect

We mentioned this form of addressing earlier in the chapter.
This was the main method of addressing memory in the 8008,
and it used the HL register to point to the memory location
of the operand. The 8080A added the capability to use BC and
DE as “pointers” for loading the A register and storing the
A register. You may be asking why this method should even
be used in the Z-80. The answer is that many instruction types
do not allow the operands to be addressed directly. While it
is possible to load the A register from a memory location di-
rectly specified in an instruction [such as “LD A, (1234H)"],
it is not possible to add a memory operand directly to the A
register from memory [such as the invalid instruction “ADD
A,(1234H)”]. It is possible, however, to set up the HL reg-
isters as a register pointer and then do an ADD, such as “ADD
A,(HL)"” or to set up the HL registers and do a variety of
other things. In general, the only direct way into the cpu reg-
isters is through the A register. It alone is the only register
(with two exceptions that permit the HL register pair to be
loaded or stored) that can be loaded or stored by an instruction
that specifies a direct memory address. Other registers in the
cpu must use register indirect means to load or store data,
or some form of indexing covered below. To show how this
works, consider the following instructions which load the B,
C, and D registers with the contents of memory locations
1000H, 2000H, and 3000H. Two ways of doing this are shown,
one by loading the memory location into the A register, and
then transferring it to the other cpu register, and the second
by using the register indirect method.

{1) LD A,(1000H) ;GET CONTENTS OF 1000H

Lb BA ;TRANSFER TO B
LD  A/(20C0H) GET CONTENTS OF 2000H
D CA ;TRANSFER TO C
LD A 3000H) ;GET CONTENTS OF 3000H
b DA ;TRANSFER TO D
(2) 1D HL1T000H ;SETUP POINTER REGISTER PAIR
LD B,(HL) ;LOAD B WITH CONTENTS OF 1000H
LD HL,2000H ;SETUP POINTER REGISTER PAIR
LD C,(HL) ;LOAD C WITH CONTENTS OF 2000H
LD HL3000H SETUP POINTER REGISTER PAIR
LD D,(HL) ;LOAD D WITH CONTENTS OF 300CH

The register indirect method of addressing is used for many
different types of instructions including loads, arithmetic,
logical, and shifts. It is always used with 8-bit (one byte) type
of operations. Because it does not have to specify a memory
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location, it is usually a one-byte instruction, and really comes
close to being an implied addressing type. A typical register
indirect instruction is shown in Figure 3-7 which shows a
rotate-type of shift performed on the memory location ad-
dressed by the HL register pair used as the pointer.

SAMPLE
ACTION: BEFORE (01000001f00000001] HL = 16641

T MEMORY LOCATION
00110011’ o

L.

AFTER (01000001]00000001] HL = 16641 (UNCHANGED)

F T MEMORY LOCATION
0011001 e

BIT BIT BIT BIT BIT BIT BIT BIT
7 6 5 4 3 2 1 0

r{y1{o0jo01}0] 111 BYTE O

ojofo|fO0fo0]|1 P o BYTE 1

THE TWO BYTES TAKEN TOGETHER DEFINE
AN "RRC (HL)" TYPE INSTRUCTION WHICH
USES HL TO DEFINE A MEMORY
LOCATION FOR A ROTATE.

Fig. 3-7. Register indirect addressing.

Direct Addressing

Direct addressing is used with two general types of instrue-
tions, loads and jumps. We have been speaking of loading the
A register directly and contrasting it with indirect means.
When a direct instruction of this type is used, the second and
third bytes of the instruction hold the 16-bit (two byte) mem-
ory address of the memory location to be used. The instruc-
tions “LD A,(4000H)” and “LD (4000H),A”, which load A
with the contents of location 4000H (16384) and store the
contents of A into location 4000H, respectively, are shown in
Figure 3-8. The two bytes representing the address are re-
versed, with the low order byte first, and the high-order second.

The HL register pair may also be stored or loaded directly
with this type of addressing. In this case the register pair is
stored in fwo memory locations as two bytes of data are in-
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At [OOOTTITT]  ocarion dnon
A
"LD A.(4000H)*
THIS BYTE DEFINES THE OPCODE 3AH
BIT BIT BIT BIT BIT BIT BIT BIT
7T 6 5 4 3 2 1 0
cjof1f{1r1{o|1}0 BYTE 0
ojofofojojo|o0|0D BYTE 1
of1]JojojJO0fO)]O]OD BYTE 2
|0|1|UIO|0[0|0I010[0]0[010[0]0[0] = 4000H = 163849
BIT BIT BIT BIT BIT BIT BIT BIT
7 6 5 4 3 2 1 ¢
oto|l1jp1jojof1]oO BYTE O
orofo;o0lo0jo0}p06]0 BYTE 1
ol11o0ltojojojo]o BYTE 2
HE GFCOE 24 U —
" LD (4000H) A" A

Fig. 3-8. Direct addressing.

volved. As usual, the first (lowest) holds the low-order byte
and the next (highest) holds the high-order byte. The address
used in the instruction itself points to the first byte of memory
to be used. The instruction “LD HL, (5000H)” will load reg-
ister L, with the contents of memory location 5000H (20480)
and register H with the contents of location 5001H (20481)
as shown in Figure 3-9. Register pairs BC and DE and SP, IX,
and IY may also be loaded or stored directly.

Direct addressing is also used with CALLs and jump in-
structions. All CALLs are direct addressing types, and all
jumps are direct addressing except for the relative type of
jumps covered later in this chapter. The format for CALLs
and JPs is shown in Figure 3-10. The first byte specifies the
opcode for the instruction and informs the cpu whether the
instruction is conditional or unconditional and whether it is
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OPCODE BYTE = 2AH
BIT BIT BIT BIT BIT BIT BIT BIT
3

7 6 5 4 2 1 0

oo j1jo0f1]o0 110 BYTE 0

cjojJojojofjofjo]e BYTE 1

610710100070 BYTE 2
MS BYTE LS BYTE

[oTtToTtToToloTo elolo[0lo 0l0l0] = 5000w

THESE THREE BYTES TAKEN
TOGETHER DEFINE AN “LD HL,
{5000H)" INSTRUCTION

ACTION:

MEMORY LOCATIONT. /_\
5000H 01000011 .

MEMORY LOCATION |1 0101011 { | |
500iH ’\/H L

Fig. 3-9. Direct addressing involving HL.

a jump or CALL. The second and third bytes are the address
of the jump location or CALL location. This data is not used
to reference a memory location as with other types of instruc-
tions, but is simply jammed into the program counter to re-
place the “next instruction” address that was automatically
calculated when the instruction was first accessed. The effec-
tive action is a jump or CALL to the location specified. As
usual, the 16-bit address is in reverse order in the instruction.

7 6 5 4 3 2 1 0
JUMP OR CALL OPCODE BYTE 0
LEAST SIGNIFICANT
BYTE OF JUMP ADDRESS BYTE 1
MOST SIGNIFICANT
BYTE OF JUMP ADDRESS BYTE 2
MEMORY Y
LOCATION v
4FFBH C3H JP 5000 H INSTRUCTION EXECUTE
4FFCH 00H
4FFDH 50H
4FFEH C6H ADD A3 INSTRUCTION (BYPASS)
AFFFH 03H
5000H C6H ADD A.4 INSTRUCTION EXECUTE
5001H 04K \'

Fig. 3-10. Jump and CALL format.

51




Relative Addressing

Relative addressing is used only for relative jump instruc-
tions; no other types of instructions use the relative type of
addressing, including CALLs. The relative jump uses two
bytes to specify the instruction, one byte for the opcode, and
one byte for the memory address. Oh, oh! There’s that kid in
the back of the class again. He’s asked a very valid question—
how can one byte specify a memory location when it takes 16
bits or two bytes to specify a memory location value of 0000H
to FFFFH (0 to 65535). It would appear that we can’t jump
to anything other than locations 0 through 255, the values
that can be held in one byte. Not true! What if we used that
one byte to find the memory location by adding the contents
of the program counter (PC) to the value found in the byte.
The new address or effective address would be the address in
the PC plus the value in the instruction byte. What’s in the
PC? Well, we know that the PC points to the next instruction
after the jump. If we add the value in the instruction to the
PC we get a value that points to the next instruction —128
through the next instruction plus 127, depending upon what
was in the instruction byte displacement. In fact, with this
type of instruction we can jump within a limited range of
256 bytes of the instruction itself. Since most of the jump des-
tinations within a typical program are close to the jump in-
struction, this appears to be a valuable instruction, as it saves
one byte of instruction length over a regular JP. Let’s see how
this works. Suppose that at location 4300 we have a jump to
location 4350H. After the “JR 4350H” instruction has been
fetched, the PC points to location 4302H, the next instruction.
If we look at the second byte of the JR instruction, we find
that the assembler has put a 4EH there. Adding the 4EH and
4302H we obtain 4350H, which is the jump address (effective
address) that is jammed into the PC to cause the jump. This
process is shown in Figure 3-11.

The second byte of the JR instruction actually holds an 8-bit
signed value in this case. Rather than representing a range of
binary values from 0 through 255, the displacement in the
second byte represents a range of —128 through +127. Binary
numbers in this two’s complement form will be discussed
further in Chapter 6, but for now just remember that the
displacement may also be negative in a JR. Of course in the
JR, as in other instructions, the programmer does not have
to tediously compute the value to be put into the displacement
byte; the assembler will automatically do it for him. (That’s
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MEMORY

LOCATION ] PROGRAM COUNTER
765432160 \  AFTER BYTE FETCHED
|
42FEH C6H ADD A5 42FFH
42FFH 05H 4300H
4300H 184 JR 4350H 4301H
4301H 4EH
4302H 3AH LD A.(5000H} 4303H
4303H 00H 4304H
4304H 50H 4305H
4305H 80H ADD AB 4306H
4306H 32H LD (5000H).A 4307H
4307H 00H 4308H
4308H 50H 4309H
4309H 3AH LD A(6000H) 430AH
430AH 00H J 430BH
430BH 60H / 430CH
o )
4350H"
-~ A
PROGRAM = 43024
COUNTER
+ +
DISPLACEMENT =  4EH
EFFECTIVE = 4350H
ADDRESS

Fig. 3-11. Relative jump action.

why we have computers!) You’ll see in the next chapter that
the instruction referenced may actually be given a name,
much in the same fashion as a BASIC variable name, which
the assembler will use in figuring out what the displacement
should be.

A Special Type of Call

The RST, or Restart instruction, started out in the 8080A
as an instruction geared for interrupts to the microprocessor,
special signals to the cpu that signal external events such as
typed characters or “line printed.” In the TRS-80, however,
the RST instruction is used for a second purpose, that of a
“short” CALL, to call a subroutine. The RST permits a call
to one of eight memory locations located at either 0000H,
0008H, 0010H, 0018H 0020H, 0028H, 0030H, or 0038H (dec-
imal 0, 8, 16, 24, 32, 40, 48 or 56). As the RST is only one byte
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long, it saves two bytes over a normal CALL instruction and
is valuable for commonly used subroutines that would be fre-
quently called in a program.

The appearance of an RST is shown in Figure 3-12. There
is a three-bit field that specifies which of the eight locations
1s being CALLed as a subroutine. The actual location ad-
dressed is found by multiplying the contents of the 3-bit

BIT BIT BIT BIT BIT BT BIT BIT
l 6 5 4 3 2 1 0

1 1 X1 X ] X 1 1 1 BYTE 0

—

FIELD DEFINING
MEMORY LOCATION

000 = 000OH Y
001 = 0008H
010 = 0010H

011 = Q018H | MEMORY LOCATION
100 = 0020H FOR CALL ACTION

101 = 0028H
110 = 0030H
111 = 0038H -

Fig. 3-12. Restart instruction.

field by eight. Naturally, the program does not have to do
this dirty work, but simply specifies an

RST 18H  ;CALL ADDITION SUBROUTINE
or similar instruction to generate the instruction.

Indexed Addressing

This is one of the powerful addressing modes added to the
base 808B0A instructions by the Z-80. Indexing allows the as-
sembly-language program to easily access data that is ar-
ranged in contiguous tables. Suppose, for example, that we
have a table of employee data as shown in Figure 3-13. Each
employee record has name, address, marital status, number
of TRS-80 systems owned, and other relevant particulars. It

54




would be nice to have the capability to access data grouped
around a particular employee record in the table. We know
that we could do this by other addressing means, such as
loading the A register directly but this is not an elegant way
to do things, and we would like to consider ourselves sophis-
ticated programmers. Take heart! The Z-80 indexed address-
ing capability affords an elegant solution (or at least a nice
one...well, it’s pretty good . ..).

Initially the program loads the value representing the ad-
dress of the table entry into an index register, in this case
IX, although IY could have been used as easily. Now, to access
any data near the record, it’s simply a case of using an in-

EMPLOYEE DATA EMPLOYEE
TABLE RECORD
EMDTAB EMPLOYEE #1 NAME +0
20 BYTES
EMPLOYEE #2
ADDRESS [+20
EMPLOYEE #3 35 BYTES
TELEPHONE | 455
10 BYTES
M|s|T] z | ND
\
\

# OF TRS-808 | +100 (101ST BYTE)

] )
LS ¥
) )
L9

EMPLOYEE #N

Fig. 3-13. Indexed-addressing table example.

dexed instruction. If the index register had been loaded with
5000H, the instruction

LD B, (IX+100) ;;GET # OF TRS-80S

would load the 101st entry, the number of TRS-80 systems,
into the ecpu B register. In other words, the cpu creates an
effective address, similar to the relative jump effective address,
by adding the contents of the index register with a displace-
ment byte from the instruction. In the case above, the instruc-
tion would appear as shown in Figure 3-14. The first two
bytes are opcode and a register field that specifies the register
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LD B,(1X + 100)

OPCODE
7. 6 5 4 3 2 140
1{rjoefirjirjrf{oqi BYTE 0
0jijojojoj1]1i]o BYTE 1
ojrjfijojoj1rjogo BYTE 2
REGISTER FIELD SIGNED DISPLACEMENT
SPECIFYING B 01100100 = 100y5 = 64H
(1X) = 5000H
DISPL. __64H

B REGISTER S000H
LOAD

5064H

-, e

5064K = EFFECTIVE ADDRESS

J

EMPLOYEE RECORD

Fig. 3-14. Indexing into table.

to be loaded. The next byte is a signed displacement that is
added to the IX register to form the effective address: in this
case the displacement is 64H as shown. The effective address
calculated for the access here is 5000H + 64H or 5064H, the
memory address of the number of TRS-80 systems for em-

ployee number one.

Indexing using the IX or IY registers may be used for a
variety of Z-80 instructions, but, of course, is always used
when the address of a memory operand is used in IX or IY.

~ 27 BIT POSITION
o 28 BIT POSITION
o 29 BIT POSITION
&~ 24 BIT POSITION

BIT NUMBER

s 23 BIT POSITION
r> 22 BIT POSITION

21 BIT POSITION
= 20 BIT POSITION

—

MOST
SIGNIFICANT
BIT
POSITION

LEAST
SIGNIFICANT
BIT
POSITION

Fig. 3-15. Bit numbering.
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We will speak more of indexing in Chapter 9, where table and
other data structures are discussed.

Bit Addressing

All of the addressing done in the preceding sections refer-
enced a memory location or cpu register byte. The bit address-
ing mode, used in the bil instructions, references a single bit
somewhere in memory or a cpu register. The format of this
addressing mode specifies a bit position from 7 through 0. The
instruction

SET 6,(HL) ;SET BIT 6 OF MEMORY BYTE

sets bit 6 of the memory location pointed to by the HL register
pair pointer. Bits in memory, cpu registers, or other TRS-80
system components are always numbered as shown in Figure
3-15. The most significant bit (msb) is numbered bit 7, and the
least significant bit (Isb) is numbered bit 0. These numbers
correspond to the power of two represented by the bit position
(bit 7 is 128, 6 is 64, ete.).

This addressing mode is used with the instructions of the
bit instruction group only, the BIT, SET, and RES instrue-
tions. The bit addressing mode allows other addressing modes
to be used in the instruction (as do other instructions, in
fact), so that bit addressing may be used in conjunction with
register indirect, indexed, or register addressing.

Conclusion and Confusion

This concludes the discussion of addressing modes used in
the Z-80. The worst problem in the use of the addressing modes
is not in understanding what they do, but in remembering
which instructions use which addressing modes. Pm afraid
that there is no magical solution to this except reference to
Appendices I and II and experience. The saving grace is that
there are always many ways to code a particular program,
both in terms of which instructions to use and what their
addressing types should be. There is no one correct solution to
any programming problem, and there are very few ‘“bad”
programs either.

In the next chapter we will look into the use of TRS-80
Editor/Assembler and T-Bug packages and assembly-language
and machine-language coding. If you have made it through
these first few chapters, you have an excellent chance of be-
coming a certified TRS-80 assembly-language programmer!
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CHAPTER 4

Assembly-Language
Programming

Now that you have digested the necessary background in-
formation on the TRS-80 and Z-80 (hope it wasn’t too filling),
we are ready to assemble some assembly-language programs
and run them. There are basically two ways to construct and
implement machine-language programs for the TRS-80. The
first way is by machine-language coding and the second is by
assembly-language coding. In the first method, a program is
written out, or coded, on paper and manual methods are used
to construct the proper sequence of instructions for the Z-80;
the program is actually coded in machine language. In the
assembly-language method, the Editor/Assembler is used to
translate a symbolic form of the instructions into machine-
language, which is then loaded into the TRS-80 by the loader
portion of the Editor/Assembler. Is the Editor/Assembler
really necessary? For all programs over one instruction in
length, the Editor/Assembler is almost a necessity for ease
in editing, assembling, and loading programs. Machine-lan-
guage can be employed in place of the Editor/Assembler, but
only if the user likes to do tedious and exacting work. The
exception to this is that some machine-language coding will
give the TRS-80 user great insights into the way the Assem-
bler constructs programs. Once he has this insight he then
will probably want to do all of his coding in assembly language.
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Machine-Language Coding

To show the reader how machine-language coding is done,
let’s write a program to write a “1” at the center of the video
display. We know from BASIC that the video display has
1024 different character positions, 64 on the first line, 64 on
the next, and 64 on each of the 16 lines making up the screen.
We also might know that each character position has a video
display memory location associated with it, starting at mem-
ory location 3C00H (15360) and ending at 3FFFH (16383).
If we wish to display a “1” in the exact center of the screen,
or as close as we can get, we would have to store that “1” in
the memory location associated with line 9, 32 characters over.
This will be location 156360 + 8 lines at 64 characters per line
+ 32 characters or 15360 + 512 + 32 = 15904 (3E20H). See
Figure 4-1 for a diagram of the screen and memory asso-
ciated with it.

Now that we know where to store the “1,” how do we store
it? The first thing that comes to mind is a store instruction.

64 CHARACTERS

LINE 1
VIDEQ
DISPLAY
SCREEN
Y
LINE 16
YIDEO
MEMORY HOLDS CHARACTER
ADDRESS FOR
15360 3C00H LINE 1.CHARACTER 1
15361 3C01H LINE 1.CHARACTER 2
R :
| 1 1
| 1 }
| | i
| | 1
A |
. l |
i : A ~ :
i B - I
' Y i Y
16382 JFFEH LINE 16.CHARACTER 63
16383 3FFFH LINE 16.CHARACTER 64

Fig. 4-1. Screen addressing.
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We can load the “1” into a cpu register and then store it into
location 3E20H. One question that comes to mind is the code
for the “1.” This is a 7-bit ASCII code representing the alpha-
betic characters, numeric values, and special characters as
shown in the Level 1I or Editor/Assembler manuals. The code
for a “1” is the value 00110001 or hexadecimal 31H (the 8th
bit is set to a zero). The following instructions load the A
register with the code for a one and then store it into loca-
tion 3E20H.

LD A31H ;LOAD A REGISTER WITH 1"
LD (3E20H),A ;STORE “1” INTO CENTER OF SCREEN

The first instruction in the above program is an immediate
addressing type load which loads “1” from the immediate
data in the instruction into the A register. The next instruc-
tion stores the A register into location 3E20H. The paren-
theses around the 3E20H indicate an address rather than a
data value,.

Well, it appears that this program should work. Our next
task is to translate the mnemonics for the instructions into
the actual opcodes, data fields, and addresses that can be input
to the Z-80. We know from our discussion in the last chapter
that the 8-bit immediate instructions have one byte for the
opcode and one byte for the immediate value. If we look in
the Editor/Assembler manual, we find that the opcode for the
LD A is 00RRR110, where “RRR” represents the register code
for the cpu register to be used. For an A register load, this field
is 111, so we now have 00111110, or 3EH. Let’s write the op-
code down opposite the instruction.

3E 31 LD A31H ;LOAD A REGISTER WITH "1
LD (3E20H),A ;STORE 1" INTO CENTER OF SCREEN

We've also written the immediate data value of 31H to be
loaded into the A register. Now let’s look at the second in-
struction. As this is a direct store, we know that it must con-
tain a two-byte address for 3E20H. In this case the opcode is
one byte long and is a 32H, with no fields. The address of
3E20H is put in reverse order into the second and third bytes
of the instruction and the opcode is put into the first as follows

3E 3 LD A3TH :LOAD A REGISTER WITH 1"
32 20 3E LD (3E20H),A ;STORE ““1"" INTQO CENTER OF SCREEN

About the only thing left in this program is to decide where
in RAM it is to reside. In most programs we must know this
before we start a manual or automatic assembly process, since
many of the jump and CALL addresses are direct addresses
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that refer to locations within the program. A good area for all
systems, Level I or II, 4K and larger configurations would
be near the end of the 4K RAM area or 18944 [the RAM
area starts at 16384, and 18944 is 16384 plus 2560 or 18944
(4A00H)]. We will now assign the locations for the two in-
structions at 4A00H and 4A01H plus two bytes for the length
of the LD A,31H or 4802H.

4A00 3E 31 LD A31MH ;LOAD A REGISTER WITH 1"
4A02 32 20 3E LD (3E20H),A ;STORE “17 INTO CENTER OF SCREEN
In the process of hand-assembling the program above, we

have had to do a number of things the Editor/Assembler could
have done much more easily. We had to look up the opcodes for
each of the instructions, insert the proper code for the A regis-
ter in the first instruction, reverse the address and put it into
the second instruction, find the length of the instructions and
properly calculate the locations for each instruction, and find
the code for the “1”. All of these things could have been per-
formed easily by the Editor/Assembler, leaving us free to
concentrate on the logic of the program. In addition, the As-
sembler performs many other functions, such as data error
checking, relative address range checking, checks on the num-
ber of operands, and so forth. For these reasons, we will be
concentrating on use of the Editor/Assembler in the remain-
der of this book, although the reader may do his own machine-
language coding from the instructions in the text, if he chooses
to do so.

The TRS-80 Editor/Assembler

The TRS-80 Editor/Assembler is a program and documen-
tation for 16K Level I or II systems. In the remainder of the
book, we will assume that the reader has access to the Editor/
Assembler and to the Editor/Assembler User Instruction
Manual (#26-2002). The description in this chapter is meant
to supplement the descriptions and operating procedures
found in that manual.

As an example of edit and assembly of a new program, let’s
take the huge two-instruction program we did in machine
language, edit and assemble it, load it, and execute it on the
TRS-80. The two instructions we had originally were in sym-
bolic form, that is we used symbols such as A to represent the
A register code of 111.

LD AJ3IH ;LOAD A REGISTER WITH "1~
LD (3E20H).A  ;STORE "1 INTO CENTER OF SCREEN
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Before we begin editing and assembling, we need a few more
things in this program and every program to put the program
in proper format for the assembler. An “ORG” statement tells
the assembler where the program will reside after it has been
loaded. Without an ORG (ORiGin) the assembler could not
assemble the direct addresses used in some of the instructions.
We’ll use the same origin as in our machine-language version,
4A00H, the 3, point of 4K RAM.

ORG 4A00H ;START AT LOCATION 4AQ0H

LD AJ3MH ;LOAD A REGISTER WITH 1

D (JE20H),A  ;STORE “1’ INTC CENTER OF SCREEN
END 4AO0CH ;END-START OF 4A0Q0H

As the ORG statement does not actually generate a machine
language instruction as do the two LDs, it is called a “pseudo-
operation” or “pseudo-op.” In place of an opcode, pseudo-ops
have mnemonics which tell the assembler what to do for pro-
gram origin, end, and data. The ORG pseudo-op has one op-
erand associated with it, a value indicating where the origin
is to be.

Another pseudo-op that is an absolute necessity is the END
pseudo-op. END, of course, tells the assembler that it has
reached the end of the assembly-language program. It may
or may not have an operand. If it does, the operand indicates
the starting point for a program after the load. Here the
starting point is 4A00H, so we have specified this value as an
operand for the END.

Now before we enter this short program, we should really
check over the logic of the program itself. This is called “desk
checking,” and saves reediting and reassembling the program
several times. We may still have to change the program in the
general case, but a good desk check will reduce the number of
times that the program has to be edited and assembled. The
only flaw in the program seems to be at the end. When the
program is loaded and run the first LD will load the “1” into
the A register and the next LD will store the “1” in A into
location 3E20H, the center of the screen. What instruction is
executed next? The one following the LD (3E20H),A. Since
we have not specified another instruction after the second,
however, there will be no third instruction, or if there is, it
will be purely coincidental. This means that after executing
the two instructions in the program, the cpu will go merrily
on its way, attempting to execute what is referred to as gar-
bage. We must terminate the program properly. One way to
terminate the program would be with the addition of a third
instruction that jumps to a known set of code, or a known
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return point for Level I or Level 11 BASIC. We'll add a jump,
but we’ll simply jump fo the jump itself to create an endless
loop of jumping to the jump to avoid executing meaningless
instructions that would cause unexpected results.

ORG 4AO00H ;START AT LOCATION 4A00H

LD AJ3TH ;LOAD A REGISTER WITH “1”

LD (3E20H),A  ;STORE "1”INTO CENTER OF SCREEN
LOOP JP LOOP ;OOP HERE

END 4AOQ00H ;END-START OF 4A00H

We've introduced an important concept here. We did not
have to calculate the location of the JP instruction ourselves.
We gave the JP instruction a label of “LOOP,” and let the
assembler figure out that the “JP LOOP” is equivalent to “JP
4A05H.” The reference to LOOP is a symbolic address.

Editing New Programs

We are now ready to use the Editor/Assembler. Load the
Editor/Assembler using the procedures outlined in the Editor/
Asgsembler manual. After a successful load, the program will
display the prompt “*?” on the video. Now type 1100,10, fol-
lowed by an ENTER. This puts the Editor into the Insert mode
and allows us to enter a number of lines starting with line
number 100, and incrementing by 10 for each line. Now type
in the five lines. The » (right arrow) may be used to tab to
the next column, the < to backspace for error correction, and
the ENTER must be used to indicate the end of each line.
After you’ve entered the five lines, press BREAK and the
program will return to the “*” prompt. The entire dialogue
is shown in Figure 4-2.

The editing process is now complete. The Edit buffer has
five lines of text duplicating what we have typed in. As a
check on our input we can Print the edit buffer by the com-
mand “*P# :*”, which will display the entire text buffer of

SPECIFIES "INSERT~ TEXT

STARTING AT LINE 100
WITH LINE INCREMENTS OF 10
*1100,10

oolo0 ORG LAOOH ;START AT LOCATION 4ACOH

00110 Lo 4,31H :LoAD 4 REGISTER wITK "1 | TEXT
ootzo Ln { 3E20H)}, A ;STORE “1" INTO CENTER

00130 LogP P LOOP :LOOF HERE INPUT
0G140 END 4ACOH ;END-START OF 4AGOH

00150
\ BREAK KEY

PRESSED HERE

Fig. 4-2. Editing operations.
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five lines. The editor does not check the text we are inputting,
and will not catch any errors in syntax or mispellings (even
TRS-80 programmers have been known to make occasional
mistakes).

Assembling

Now we are ready to assemble. Type “*A” for assembly,
and the Assmbler portion of the Editor-Assembler will as-
semble the five lines, displaying the assembled code on the
screen as shown in Figure 4-3. The right-hand section of the
listing is the source code that we have just entered; the left
hand side of the listing is the machine code information that
will be loaded into the TRS-80. The first column shows the
locations for the instructions, starting at location 4A00H, and
incrementing for each instruction, dependent upon instruction
length. The next column shows the actual machine code for
the instruction. This will range from one to four bytes, de-
pendent upon the type of instruction and its addressing modes.
The next column gives the line numbers, starting with line
number 100, as we specified.

Fig. 4-3. Assembly operations.

Where is the machine language code at this time? It is in
a buffer ready to be written to cassette tape or disc. We will
use cassette tape to make it more general for all TRS-80 users.
After preparing the tape, press ENTER and the Assembler
will write out the machine code to cassette. Notice that nothing
has been executed in the program to this point. The actions
so far have been analogous to hand assembling the instructions
and writing down the machine code to be loaded and run. The
cassette tape has been used to write a file of object code repre-
senting the machine code of our short program. There’s that
persistent kid from the back again. . . . The object code looks
very similar to the machine code, except that it contains addi-
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tional data about the origin, file header information (the name
of the cassette file—*NONAME” in this case), and other in-
formation that will help in the loading of the program.

Loading

We've assembled, edited, and now we are ready to load the
object code. After the load, the machine code will be at loca-
tions 4A00H through 4A07H and we can execute the program.
At this point we are done with the Editor/Assembler and can
go back to Level I or IT BASIC. We must now use the SYSTEM
mode fo load the object program; the SYSTEM mode is in-
herent in Level IT BASIC but must be implemented by loading
a special SYSTEM tape in Level I BASIC (see the Editor/
Assembler manual for directions). The SYSTEM mode is
used to load assembler object programs, and to transfer con-
trol to the program after it has been loaded. After the SYS-
TEM prompt of “*?’ type in “NONAME” to load the object
file from cassette tape. If a successful load is performed, the
prompt “*?” will again appear, indicating that the program
is now in memory at locations 4A00H through 4A07H. All
that remains now is to transfer control to the starting address
of the program at 4A00H. We do this by typing in the decimal
equivalent of 4A00H after a slash (“/”) or simply by typing
in a slash, as we have indicated the starting address of the
program in the END statement, and this has been saved in the
object program. The result should be a “1” displayed in line 8
at the middle of the screen. Not a very impressive beginning
for a programmer who will revolutionize the field of assembly-
language computing, eh? But by the end of the book. . ..

Assembler Formats

Now that we have successfully assembled our first program,
let us discuss assembly-language formats in a little more de-
tail. As we saw from the listing, the basic format of all as-
sembly lines is an opticnal label, an opcode or pseudo-op
mnemonic, operands to fit the instruction or pseudo-op, and
optional comments, as shown below.

THERE ADD A, (IY+100) ;THIS IS THERE

The label may be one to six characters, the first of which
must be alphabetic. There are certain reserved words that
cannot be used for labels, such as register names (IX) and
flags (C). These are listed in the Editor/Assembler manual:
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just remember to stay away from labels that are the same as
flags or registers, such as HL (they will assemble with an
error indication).

The opcode or pseudo-op must be one of the mnemonics
given in Appendix II or the pseudo-ops given later in this
chapter. These mnemonics follow the standard Zilog Z-80
mnemonics, and are also provided in the description of the
instructions in the Editor/Assembler manual.

The operands are in the third column of an assembly-lan-
guage line. The number of operands to use depends upon the
instruction and addressing type. As we know from Chapters
2 and 3, some instructions have no operands, such as SCF,
and others have one or two, such as “BIT 7,(HL). The oper-
ands may specify data, as in the immediate load

LD HLA3FFFH  ;LOAD HL WITH 3FFFH
or addresses, as in the load
LD HL(3FFFH) ;LOAD HL WITH CONTENTS OF 3FFFH

Note the difference in data and addresses. Except for jumps
and CALLS addresses are always enclosed by parentheses, and
data is never enclosed in this fashion. Jump and CALL oper-
ands are addresses not enclosed by parentheses. The formats
for Z-80 instructions are given in Appendix II and in the in-
struction descriptions of the Editor/Assembler manual. In
place of numeric operands for data or addresses, symbolic
names may also be used. These names must have a correspond-
ing label somewhere else in the program. An example of this is

LD A,(COUNT) ;;LOAD COUNT OF COUNTS

LD B,(DUKE) ;LOAD COUNT OF DUKES
1 s{other code)
COUNT DEFB 0 ;LOCATION HOLDING COUNT OF COUNTS
DUKE DEFB 0 :LOCATION HOLDING COUNT OF DUKES

Some instructions refer to flags; for example, the condi-
tional jumps that test a flag status for the jump. Certain
mnemonics are used for the flag=0 and flag=1. These are “C”
and “NC” for carry flag=1 and ecarry flag=0, “Z” for zero
flag=1 and “NZ” for zero flag=0, “PE” for parity even (P/V
flag=1) and “PO” for parity odd (P/V=0), and “M” for
minus (S flag=1) and “P” for positive (S flag=0). These
mnemonics are reserved for the use of flag references. An
example of an assembler line using a flag reference is
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ADD A37 ;ADD A AND 37
JP M, OMMY ;GO IF RESULT NEGATIVE
;RESULT POSITIVE HERE

The comments column is also optional. When you are debug-
ging a program some dark and lonely night and wondering
what you did in those ten instructions that have no comments,
think back upon this advice: There are never too many com-
ments. A comment may also be used in a line by itself as in
the following code.

;THIS 1S A ROUTINE FOR A STAND-UP COMIC
LD A, (JOKE} ;GET JOKE FROM MEMORY
LD {(LOC),A  ;DELIVER

Just as BASIC allows various expressions, combinations of
symbolic variables and constants, so does the assembler allow
limited use of expressions. These are detailed in the Editor/
Assembler manual. Addition, subtraction, logical AND, and
shifts are allowed. We will only be using addition and subtrac-
tion in this book, and leave the use of the others to your ex-
perimentation, Addition and subtraction are represented by
“+” and “—", just as they are in BASIC. As an example of the
use of expressions in assembly language coding, let’s use the
program we’ve been working with. We stored a “1” into the
center of the video display, which was really in the center of
the video memory area. We knew that the start of the video
memory was at 3C00H, and that we wanted to store the “1” at
the 512 + 32 character position on the screen. The following
code will perform the store.

;STORE AN ASCII ONE NEAR CENTER OF SCREEN

LD AJ31H ;ASCII ONE
LD (3COOH+512+32),A ;CLOSE TO CENTER

The same technique could be used for subtracts, or with ex-
pressions consisting of symbolic labels and constants. Note
that in the expression, hexadecimal data was intermixed with
decimal data. Hexadecimal data is always suffixed by an “H”
to mark it as hexadecimal. In addition, hexadecimal data must
have a leading zero, if the hexadecimal value starts with A
through F. The value of A0OOH will confuse the assembler and
result in the assembler trying to find a label of A000H, rather
than treating it as data. Decimal values may simply be values
without either leading zeros or suffixes, as shown in the ex-
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ample We will use various expressions in the course of the
chapters involved with programming examples in this book,
so you will have a chance to see further use of them.

More Pseudo-Ops

When we wrote our first assembly-language program earlier
in this chapter we used two pseudo-ops, the END and ORG
pseudo-ops. The TRS-80 Editor/Assembler has six additional
pseudo-ops, DEFB, DEFW, DEFM, DEFS, EQU, and DEFL.
They are used to generate byte, word, and string data, to re-
serve memory, to equate a label, and to set a label.

The DEFB generates one byte of data rather than an in-
struction. Suppose that in the program we’ve been using we
wanted to store the ASCII one in memory as a constant value,
rather than loading it as an immediate value. The following
code would do exactly that. A 81H, the ASCII 1, would be
stored at location 4A09. When the program was executed, the
instruction at 4A00 would load the contents of “ASCONE”
into the A register.

2ITED T SoDe
EHIDR 1 SRCEH

P b
HIE 48R0

i

The DEFB can be used as many times as is necessary. Each
time it appears, one byte of data is generated. The DEFW, on
the other hand, DEFines a Word of data, or two bytes. As we
are frequently working with 16-bit data for addresses or con-
stants to be used with register pairs, the DEFW is handy. The
following code generates both 8- and 16-bit constants by use
of DEFB and DEFW.

Of course the 16-bit values generated are in the usual re-

verse order. The most significant byte is last and the least sig-
nificant byte is first.
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The DEFB may also be used to generate a one byte ASCII
value directly. This saves the programmer the trouble of look-
ing up an ASCII equivalent code for character data. Not only
does the assembler do this for one byte, but it also generates
a whole string of characters to be used for messages or other
purposes when a DEFM, or DEFine Message is encountered.
The following code shows how the DEFB is used to generate
one byte ASCII values and how the DEFM is used to generate
a string of characters.

st e

The resulting characters from DEFM are spread out over
the print lines of the listing, along with the location for each.
This makes it somewhat difficult to read, but it sure does beat
assembling the corresponding messages or one byte ASCII
data manually.

The DEFS pseudo-op is used to reserve Space in the pro-
gram. Many times a section of memory must be set aside to
be used for a buffer, message area, matrix, or other reserved
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E [AR4A E‘éﬁié JP CONTH :JEP VER BIFFIR
Fod HCH DFLER DEFS BB CUFFER A7ER

$HB P BBISE LM LD Al FIRITIARLLE ffs}”
R Badn B

ram

,_-Fr-:";x T 'r. T .: r-r.ﬂ,i E}l"‘

RFFER 462
T 4B

area. Although we could use a series of DEFBs or DEFWSs to
generate the space by defining zeros or all ones, it is some-
what easier to use the DEFS pseudo-op. The DEFS in the
above code reserves 200 bytes of storage between the JP and
the LD instruction. (It would be very tedious to use 200
DEFBs or 100 DEFWs to do this, although we might do the
same thing by a new ORG.)

The first instruction appears at 4A00H through 4A02H.
Then 200 bytes (C8H) of reserved space are requested by the
DEFS. The next instruction appears at 4A03H plus C8H, or
4ACBH.

The EQU or EQUate pseudo-op is used to equate a label to a
value. The label can then be used at any time, without know-
ing the value. If we haven’t exhausted the usefulness of our
first program, let us see how this works in a simple case. The
code below EQUates the label ASCONE to the value of ASCII
one. Any time we wish to load or otherwise handle an ASCII
one after the equate, we can simply use the label ASCONE,
instead of having to remember the value or having to load
the value from a constant location in memory.

0 Atan R 4fB

Ml BELIG RSOCONE RGN MK (AECID
s 3w Lb H: ASCHHE ;LO0RD ASCIT DM
L i IR

desne TOTAL ERRORS

AOTNE a8t

Notice that when the ASCII one was referenced it was
treated as an immediate value, rather than an address. The
immediate load resulted in immediate data of one byte repre-
senting ASCONE, or 31H. The label may be an address as
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FlgseH ;AT HFFER

] . T T S 5 g ]
B EEFFER ;FOINT 10 BIFFER

well, as in the case of the code above which loads the imme-
diate data value of BUFFER, representing a 16-bit address
value, into the HL register pair, thus causing the contents of
HL to point to a buffer area.

The last pseudo-op is DEFL. DEFL is similar to EQU in
that it sets a label equal to some value or expression. DEFL,
however, can be used many times for the same label, while
EQU may be used for a label only once in a program. As an
example of this, consider the code below. An ASCII “A” has
been defined by a DEFL as label ASCA with a value of 41H.
In fact, this is an upper case ASCII A. By changing the 6th
bit (bit position 5) from 0 to 1, the ASCII upper case A may
be converted to a lower case A. We'll do this in the program
by using DEFL to redefine the value of ASCA as required.
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Notice in the above code that ASCA was first recorded by
the assembler as a 41H, but when it was redefined by the sec-
ond DEFL it appears at 61H. (The intervening blank lines
represent other code in the program.)

A Mark II Version of the Store “1” Program

We've discussed a lot of concepts in this chapter. Let’s try
to clarify some of them by writing an expanded version of the
program to write a “1” near the center of the screen. In the
Mark II version we will write out an entire message to line
9 of the screen. From our earlier analysis, we know that the
screen video starts at address 3CO0H and ends at 3FFF. We
want to start the message at line 9, which is 8*64 characters
from the start of the screen memory, or 3CO00H + 512. To sim-
plify matters we will write out an entire line of 64 characters.
We'll use register pair HL to point to each of the characters
in the message and index register IX to point to the next byte
of the video display memory. As we write out each character,
we’ll adjust HL: and IX by adding one to point to the next
character and next video memory address. To determine when
we've reached the end of the message, we’ll put a zero at the
end and test for zero as we transfer each character. Zero
(null) is not a valid ASCII character, so we will know when
we have written 64 characters to the screen. The program for
this is shown below.
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4A00H, the location we have been using all along. VIDEO is
equated to 3COOH, the start of the video display area. The
next two instructions load HL with a 16-bit value representing
the start of the message and load IX with the start of line 9
(3C00H+512), The instruction at LOOP loads the next char-
acter from the message. To begin with, this is the first letter
of the message at 4A18H, but the contents of HL will be in-
cremented by one with each storage of a character. The LD
at loop uses register indirect addressing to load the memory
location that HL points to. As each character is loaded, the
instruction CP 0 tests for a zero byte. A zero has been put at
the end of the message to indicate the terminating condition.
Notice that no other ASCII character in MESSGE is zero.
Normally, the JR Z,DONE will not transfer control to loca-
tion DONE because the character will not be zero and the Z
flag will not be set. In every case except the last character the
program “falls through” to the instruction at 4A0CH which
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stores the character in the location pointed to by the index
register IX. In this case the displacement of the index register
addressing is zero (the last byte) so the effective address is
simply the contents of the index register itself. The next two
instructions add one to the HL (message) pointer and IX
(video) pointer. The jump at 4812H loops back to location
LLOOP where the process is repeated for the 64 characters of
MESSGE. On the 65th character, the byte is zero, the Z flag
is set on the compare, and the jump to DONE is taken. The
instruction at DONE jumps to itself to create an endless loop.

There are many ways that this program could be imple-
mented. Relative jumps could have been used in place of direct
jumps in two places, for example, or the loop may have been
made more efficient by using other types in instructions. How-
ever, as a second program, it is not a bad effort, and employs
quite a few of the things we have been discussing in the last
three chapters.

This program can be edited, assembled, loaded, and exe-
cuted in the same manner as the first we discussed, and the
reader is urged to do so.

Further Editing and Assembling

We have touched on a few basics in regard to editing and
assembling. A complete description of editing modes is cov-
ered in the Editor/Assembler manual. The editing functions
of the Editor/Assembler permit source lines to be deleted or
modified either on a line or character basis and are similar
to the EDIT mode of LEVEL II BASIC. There are additional
capabilities of the assembler that we haven’t discussed, pri-
marily in regard to assembly options such as not producing
object code, listings, waiting on errors, and so forth. We will
attempt to fill in many of these as we give programming ex-
amples in the next chapter, but it would benefit the reader
to review the first portion of the Editor/Assembler manual
and run some practice examples in both the edit and assembly
mode,

In the next chapter we'll cover T-BUG and debugging of
programs. T-BUG is used to debug assembled and loaded as-
sembly-language programs, but may also be used to hand
assemble and load machine-language programs. If the reader
still isn’t convinced of the merits of the Editor/Assembler, if
he has limited memory, or if he simply likes to do machine-
language coding, he will find the chapter very useful.
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CHAPTER 5

T-BUG and Debugging

In the past chapters we’ve learned about the architecture
and instruction set of the TRS-80 and something about edit-
ing, assembly, and loading of an assembly-language program.
The actual sequence of events for an assembly-language pro-
gram is identical to BASIC programs. The program is first
defined by some type of specification—what will the program
do and how will the input and output look. The program is
then coded. After a desk check, the program is assembled and
reassembled if there are assembly errors. When an error-free
assembly has been achieved, the resulting program is loaded
and executed. Chances are the program will not run the first
time, and may not run the fifth time. That’s where debugging
and a debug package, such as T-BUG comes in.

T-BUG is an assembly-language program that can be used
to debug assembly-language code, or to enter machine-lan-
guage code. T-BUG allows the assembly-language programmer
to print the contents of locations, to modify locations, to print
the register contents, and to debug small segments of code by
breakpointing. It would be virtually impossible to debug an
assembly-language program without some means to do these
things, as each program would have to be completely error
free before execution. There are very few programmers that
have written a moderately large error-free assembly-language
program that ran the first time!

Loading and Using T-BUG

T-BUG is loaded into Level I by the CLOAD command and
into Level IT by the SYSTEM command with a file name of
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“TBUG”. After T-BUG has been successfully loaded, a prompt
sign of “#” will be present in the left hand corner of the
display.

Since we will be debugging all of the programs in the re-
mainder of the book using T-BUG, it is important to know
where in RAM T-BUG resides, so that we may avoid that area
of memory in assembling programs. Figure 5-1 shows the
memory mapping when T-BUG is present. Level II T-BUG
occupies 4380H through 4980H, or up to the first AOOH (2560)
locations of RAM. Level II T-BUG uses an “internal” stack
area starting from 4980H, so that no RAM outside of the first
1024 locations will be used by any T-BUG function. We will
be safe, then, in assembling our programs to run anywhere
in the RAM area above 4A00H. We will use 4A00H as the
starting location for all of our programs, giving us 600H
(1536) bytes of memory for the reader with 4K of RAM (and
who must program in machine language) up to a maximum
of 44K for those readers with larger systems.

ROM. DEDICATED, T

VIDEQ DISPLAY.
3rFen | ETC
4000H

LEVEL
1
T-BUG
LEVEL
T v

T-BUG /
4980H ,////i:;
4A00H BASIC AREA USED
arppy | 1930 LOCATIONS FOR PROGRAMS IN THIS BOOK
5000H

ADDITIONAL AREA
AVAILABLE FOR
EXPERIMENTATION
-~ A~
TOP OF USER'S
MEMORY

Fig. 5-1. Memory mapping with T-BUG present.

T-BUG Commands

T-BUG has nine commands, all specified by one character,
M, X,R, P L B, J, F, and G. Some of the commands have
arguments (data associated with the command) and some
do not.
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Let’s load T-BUG and examine the commands available.
After a successful load the first 16 columns of the video dis-
play are cleared and the program displays a “#” at the upper
left column of the screen. The format of the M command is
#M aaaa where aaaa is a hexadecimal value (can’t get away
from hexadecimal, can we!) representing the Memory location
we wish to examine. After the last digit is entered, T-BUG
will display a two digit hexadecimal value representing the
contents of the memory address. Try the M command with
a value of 4A00H. You will get a display of the contents of
4A00.

# M 4A00 2

Now hit the ENTER key, and you will find that the next loca-
tion will also be displayed.

# M 4A00 21
4A01 FF

This process can be continued to display successive locations
until either memory or you are exhausted. Hitting an “X”
at any time terminates the memory display function and
brings you back to the monitor prompt again.

# M 4A00 21
4A01 FF
4A02 FF
4A03 FF

#

Entering data in place of ENTER will change the memory
location to the values entered. Two hexadecimal digits must be
entered. Let’s go back to the original (Mark I) version of the
program to write a “1” near the center of the screen. The pro-
gram is shown below.

s Ea wE s (SIFET AT LDOATIEN 4
# FE B L {33 A ;STORE °1° INTD CHHTER

E o A0
LiEd HELY

Starting at location 4A00H, let’s enter the machine code for
that program. The entry will look something like this at the
end.
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# M 4A00 3E
4AD1 FF 31
4A02 FF 32
4A03 FF 20
4A04 FF 3E
4A05 FF C3
4A06 FF 05
4A07 FF 4A

#

We can now go back and check the locations by the M com-
mand to verify that all data has been entered correctly. This
is really not so much a check on machine malfunction as it is
on operator malfunction.

The J, or Jump, command in T-BUG allows the user to
transfer control to a location for execution. Specifying J aaaa
causes the monitor to jump to location aaaa, where aaaa is
again a hexadecimal four-digit value. We could at this point
perform a J 4A00 to execute the Mark I version of the pro-
gram, If we do that, however, the program will be “hung up”
in an endless loop to itself at location 4A05. The only way to
get out of the loop in Level 1 is to reload T-BUG; in Level II
T-BUG may be reentered by a SYSTEM transfer to 4380H
(17280), but the recovery is still a nuisance.

The B command allows us to execute a program up to a
point where control is returned to the T-BUG monitor, thus
keeping the debugging from becoming a series of recovery
procedures as it goes off into cloud cuckoo land. The B com-
mand establishes a breakpoint. At the breakpoint location
control is returned to the monitor where locations or registers
may be examined, a new breakpoint may be established a little
further on, and the progress of the program may be checked.

Let us see how the Breakpoint operates. In this simple pro-
gram, suppose that we want to stop at location 4A02 to verify
that 31H did in fact get loaded into the A register. The B
command would be

# B 4A02
Now we could execute the jump to 4A00H to start execution by

# 1 4A00

The instruction at 4A00 would then be executed. After this
instruction the breakpoint would be encountered at 4A02 (an
instruction returning control to the T-BUG monitor) and
T-BUG would be reentered, with a display of the # in the
upper left-hand corner.

After the breakpoint, the first order of business is to exe-
cute an F command. Entering an F restores the instruction
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that was temporarily replaced by the breakpoint. Entering
a breakpoint address causes the monitor to place a CALL in-
struction to the breakpoint-handling routine in T-BUG. Since
the CALL is three bytes long, it replaces the three bytes in
the program at the breakpoint instruction. The three bytes
of the program must be restored before proceeding and the F
accomplishes this.

Before proceeding the user can now examine memory loca-
tions or cpu registers to see what program actions have oc-
curred. About the only thing that can be verified here is that 31
was indeed loaded into the A register. We can examine the A
registers and all cpu registers by using the T-BUG R com-
mand (Register). The R command causes a display of all epu
registers in the format shown in Figure 5-2. In our case the
display might look like the following.

#t FFEF FFFF
FFFF FFFF

3142 00FD
41E9 43EQ

FFFF FFFF
4980 4A02

The 31 in the A register position indicates that the A register

was properly loaded.

To continue from this point, another breakpoint must be
put into the program a little further on. In our program the
next breakpoint will be at 4A05 to prevent an endless loop.
Rather than a J command to resume execution, however, a
G (Go) should be used. The G command will cause resumption
of the program at the breakpointed instruction (4A02), with

AR XX XX XX|xx}| BC

+ TWO HEX DIGITS/REGISTER
DE | XX| XX XX|XX| HL
AF PXX XX XX|XX| BC

> TWO HEX DIGITS / REGISTER
DE | XX| XX XX XX| HL
X | XXXX XXXX | 1Y

+ FOUR HEX DIGITS/REGISTER
SP I XXXX XXXX | PC

J

Fig. 5-2. T-BUG R command format.
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all registers properly restored and no ill effects from having
had the breakpoint. If the reader will execute the following
sequence he will see the “1” written out to the center of the
screen, followed by the “#” for the 4A056H breakpoint at
the upper left hand corner of the screen.

#F (to restore the 4A02 areq)
#B 4A05  (to set a new breakpoint)
#G {to resume execution)

What if the user had wanted to change the contents of a
register location before proceeding from a breakpoint. This
is certainly possible, and necessary in debugging. The pro-
cedure s somewhat complicated, however. To change the con-
tents of a register, a memory location representing the cur-
rent contents of that register must be changed. The memory
locations representing all of the cpu registers are shown in
Figure 5-3. To change the D register, for example, memory

LEVEL LEVEL

il {
4825H 43B7H FLAGS’
4826H 43B8H A’
4827H 43B9H ¢
4828H 43BAH B’ ,
4829H 43BBH £ AREA
4828H - ---- 43BCH D
482B8H 43BDH L'
482CH 43BEH H 1
482DH 43BFH FLAGS 4
482EH 43C0H A
jgggn _____ :gg;ﬂ g NON' Fig. 5-3. T-BUG register locations.
4831H 43C3H E AREA
48324 43C4H 0
48334 4305H L l
48344 43C6H H
4835H 43C7H IX LOW
4836H ~---- 43C8H I% HIGH
4837H 43C9H Y LOW
4838H 43CAH 1Y HIGH 16-BIT
4339H 43CBH SPLOW REGISTERS
483AH 43CCH SP HIGH
483BH 43CDH PC LOW L
483CH -~--- 43CEH PC HIGH

location 43C4H must be examined by an M command and new
data entered. To change a 16-bit register, two memory loca-
tions must be changed, representing the high-order byte and
the low-order byte of that register, as shown in the figure.
To change the 1Y register to 4FE3H, for example, memory
location 43CAH must be changed to 4FH, and memory loca-
tion 43C9H must be changed to E3H. After the change in one
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or more registers, a J (jump) or G (go) command must be
executed to effect the change,

T-BUG Tape Formats

As we mentioned earlier, debugging assembly-language
programs is a major part of the assembly-language program-
ming process. The object is to find as many bugs as possible
before reassembling the program to reduce the time spent in
editing and reassembling. As each bug is found it may be
corrected in machine language, if the user knows the instruc-
tion formats and addressing modes (see, we told you that it
would help to get a background in the instruction set). Of
course the user can avoid this approach and simply reassemble
the program each time bugs are found.

As a simple example of this paiching technique, let’s go
back to the code we’ve entered for the Mark I version of the
screen output routine. Suppose that we had found that instead
of writing a “1” to the screen, we should have written an
“*¥” Using T-BUG it is a simple matter to change the 31H in
the second byte of the first instruction to the code for an
asterisk, 2AH.

# M 4A01 31 2A (hit X)

Suppose that we had wanted to insert code between two
existing instructions. That is a little more difficult to patch,
but still possible. If we had wanted to store one “1” in both the
32nd and 31st character positions we could patch in the in-
struction to store in 3E1FH (31st position) by putting a jump
to a patch area at 4A02, jumping out to the patch area, per-
forming the store in 3E1F, performing the store in 3E20H
(destroyed by the jump), and then jumping back to the in-
struction at 4A05. Of course, the patch area should be in an
area of memory unused by our program or by T-BUG. The
patches for this are shown below.

4A00 3E (original LD A,31H)
4A01 31

4A02 C3 (patched JP 4B00)
4A03 00

4A04 4B

4A05 C3 (original JP 4A05)
4A06 05

4A07 4A
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4BO0 32 (restored store to 3E20H)
4B01 20

4B02 3E

4B03 32 (new store to 3ETFH)
4B04 IF

4B05 3E

4B06 C3 (return to program)
4B07 05

4B08 4A

Patching to correct errors can be done as often as required
until it reaches the point where the programmer does not
know which areas have been patched and which have not. The
user can quickly determine his own requirements for reas-
sembly of a patched program.

To provide a means to save patched programs, or to pro-
vide a means to save any machine-language program, T-BUG
has two additional commands, P for Punch tape, and L for
Load tape. The P command writes any specified area in mem-
ory to cassette tape. The resulting tape format can be read by
T-BUG or by the SYSTEM command in LEVEL II. To save
locations 4A00H through 4B08H, for example, the command

# P 4A00 4BO8

would be entered for LEVEL 1. Level II requires two more
arguments, one for the entry point (start) and one for the
file name (up to six characters). The level II format might be

# P 4A00 4B08 4A00 MARKI (ENTER)

After the command is entered, T-BUG writes out the specified
area and includes the entry point and file name for Level II.
The format used for Level I write is shown in Figure 5-4.

Once the T-BUG cassette tape has been written it may be
loaded at any time by the L command (or the SYSTEM com-
mand in Level IT). The L command has no arguments, and
the tape will start loading after the L has been typed. Tape
loading is indicated by the usual asterisk in the lower left
hand corner. Successful loading is indicated by the “#”
prompt; an error in loading the data will result in an “E”
after the load command. The format used for assembly object
output is the same as T-BUG’s, so that T-BUG may be used
to load object tapes produced during assembly.

The above describes the T-BUG commands and their typical
use. The reader is urged to experiment with T-BUG as we
will be using it in following chapters for debugging pur-
poses. A reference list of T-BUG commands follows.
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128 BYTES OF
ZEROS
(128) [l

ASH (1)

START
ADDRESS (2)

ENDING
ADDRESS + 1(2)

-

3\

DATA
A "CORE
IMAGE” OF |
PROGRAMS
AND/OR DATA
(VARIABLE)

{N) = NUMBER OF BYTES

END

CHECKSUM {1}

Format
# M aaaa

ENTER (after M)
X (after M, J, B, P)

# R

# P aaaa bbbb

(Level I)

~

Fig. 5-4. T-BUG tape format.

Description
Display location aaaa

display next location
Exit operation

Display registers

Write cassette from aaaa through

bbbb

# P

# L
# B
# F

# G

aaaa bbbb
cccce NAME
(Level II)

aaaa

# J aaaa

Write cassette from aaaa through
bbbb with starting address
cece and file name NAME

Load a T-BUG tape
Set breakpoint

Restore instruction after break-
point

Continue from breakpoint

Jump to location aaaa

83




Standard Format in Following Chapters

The program in the following chapters will illustrate the
use of Z-80 instructions in accomplishing certain types of
operations. All code will be assembled starting at location
4A00H, so that T-BUG may be used to debug or investigate
the actions of the programs discussed. At the reader’s option,
these programs may be assembled and loaded using T-BUG,
and then debugged, or the machine-language code for the pro-
gram may be entered using T-BUG without assembly. The
RAM area available for patching, buffers, or other use is
located from 4A00H through 4FFF for minimum 4K RAM
systems, or from 4A00H through “top of memory” for larger
systems.
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SECTION 1l

Programming Methods







CHAPTER 6

Moving Data in Bytes,
Words, and Blocks

This chapter will discuss ways in which to move data from
the cpu to memory, between cpu registers, from memory to
cpu, and from one area of memory to another. At first glance
this might not seem like such an exciting topic, but the ad-
dressing concepts practiced here can be applied to many of
the other instructions covered in later chapters. In addition,
the block move instructions are interesting instructions that
are not found in other 8-bit microprocessors. They are some
of the most powerful features of the Z-80.

Byte and Word Moves

We have already seen examples of loading and storing data
into single or double registers in the Z-80. Eight-bit loads
can be accomplished by immediate loads or by loading oper-
ands from memory. Suppose that we want to load all of the
cpu registers except for the PC (program counter) with 8
bits of data. Remember that there are fourteen general pur-
pose cpu registers, seven in each set of prime and non-prime
registers, and three 16-bit or two-byte registers, the IX, 1Y,
and SP. We’'ll ignore the I and R registers as these are not
generally used except for interrupt handling and refresh
operations.

Let’s consider the 8-bit general-purpose registers first. We
would like to write a program to load the registers as follows:

87




A register Loaded with 9

B 11
C 12
D 13
E 14
H 15
L 16
A’ 1
B’ 3
C’ 4
D’ 5
E’ 6
H’ (l
| 'l 8

Loading these values into the cpu registers with immediate
values is easy, because all cpu registers may be loaded by an
immediate data value. The only trick here is swapping reg-
ister sets. The swap is done by the EX AF,AF” instruction,
which swaps the two A registers and the flag, and the EXX
instruction which swaps all other registers. The main ques-
tion (raised from the back of the room again, I see) is which
set is which? It is up to the programmer to keep track of
which of the two sets of registers he is using. When the
TRS-80 is powered up the non-prime set is active; perform-
ing one or both of the exchange instructions switches the cpu
to the other set. The primed set is simply the set of registers
that is not currently active, and the program must keep track
of which set is being used, not unlike remembering which of
two book ends you’ve hidden a ten-dollar bill under. The fol-
lowing program loads all general-purpose cpu registers with
the indicated values above. Put a breakpoint at END, jump
to START, and then display the registers by an R command
in T-BUG, and you should see a sequence of 00 through 10H
displayed for the general-purpose registers. The IX, 1Y, SP,
and PC will hold meaningless values.

88




R B I WL

Now suppose that we would like to load constants from
memory instead of immediate values. (Don’t ask why, kid,
just do it!) There are two ways to handle this approach, as
we explained in an earlier chapter. One way would be to set
up HL, DE, BC, IX, or IY to point to the constants to be
loaded and to then load in the values using either register
indirect addressing or indexing. This would work fine if the
data were grouped in a contiguous area, but would require
setting up a new value in the pointer register for each load
if the constants were scattered over different locations in
memory. The second approach, which we'll implement in the
following program uses the A register as a pipeline to channel
data from the constants in memory to each of the cpu
registers.
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Storing 8-bit data works in pretty much the same fashion
as loading cpu registers. The general registers can always be
stored by using a register pair as an indirect pointer, but
only the A register can be loaded directly from memory. If
we were to store the contents of the cpu registers back into
the constant locations in memory, the register pair or index
register used as the pointer would have to be set up with the
new location each time a store was performed, as shown in
the program below. The reader may care to execute this pro-
gram directly after the load program to verify that the
registers have been stored. Zero ELEVEN, TWELVE and
THIRTN after the load breakpoint, put in a new breakpoint
at 4A1EH, and jump to 4A12H to perform the store. (Don’t
forget the “F” after each breakpoint to restore the instrue-
tion.)
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[ ]
o b
o

#E 2R BT b ELEENLR RESTORE
BECUER BB LIP P LD :L0P HEFE 4 B
11 898 THIRT EB 4R1MM

s#ia W THLVE B aRiE

o WA OEE P 4R

e e 35

Sixteen bits of data are somewhat harder to move around.
Register pairs can be stored directly to memory, may be stored
in the stack by PUSHes (covered in a later chapter), or may
be transferred by using the HL register pair as a routing
point. Storing the register pairs in memory is not generally
something that is commonly required. Loading 16-bit data
into register pairs can be handled by immediate loads for con-
stants, by direct loading of register pairs, and by routing other
16-bit data through HL. A common trick in loading two single
registers with two separate operands is to perform an immedi-
ate load of a register pair. This only works, of course, when
the two single registers involved happen to be in the same reg-
ister pair. The resulting instruction sequence is much shorter
than 8-bit loads.

TRt (ITTI 45 ;:?
£ RrilsipEs HIGH ibEH]

T

LT e g

JLOF HERE FIE B
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Transferring data between two register pairs is almost
always done by PUSHing the first register pair and POPping
the second to transfer data from the first into the second. To
load HL with the contents of BC, for example, the instructions

PUSH BC ;BC TO STACK
POP HL ;RETRIEVE BC, PUT IN HL

would be performed.

Filling or Padding

All of the foregoing is fairly abstract, even when T-BUG
18 being used to verify the results of the code. Get ready for
some spectacular visual effects! Fortunately for us and espec-
ially that reader who keeps nodding off, moving identical data
to fill buffer areas or to initialize tables may be observed on
the display. After all, the display is simply additional memory
dedicated to the 1024 characters or 6144 pixels of a display.

Let’s illustrate two methods of addressing in a routine to
fill data. In this routine, a specified data byte from 0 to 255
(OH-FFH) is written into a memory area from a starting
address to an ending address. The fill function is frequently
used to “zero” portions of memory, to fill tables with —1
(FFH), or to pad character lines with blanks (20H).

The fill character will be in the A register, while the HL
register will be set up with the starting address of the mem-
ory area to be filled. We could specify either an ending address
or the number of bytes to fill. Specifying an ending address
would require that we have a 16-bit address that could be
used to compare the current fill location with the ending ad-
dress. The second approach would use a count in one of the
registers that would be decremented with each filled byte.
When the count reached zero the fill would be over. If a single
register were used, the count could be 0 through 255. If we
wanted to fill more than 255 bytes we would have to use a
register pair, which could specify a fill count of 0 through
65635, which would certainly be adequate for a 64K system!
In the following example of the fill we’ll try the second ap-
proach; we’ll put the fill count in a single register. The para-
meters will be in the registers before the fill starts as shown
below.

(A} = character to be filled

(HL) = starting oddress for the fill
(B) = number of characters to be filled from 1 to 256
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s

8156 ;. (H=5TRRTING AORESS
S4B ;  (R)MMEIR OF BYTES

MG
8 GEAR BIPASTRRT LD A ;FILL WITH RSTERISHS
2 el felne iy . S0RH :START OF SCREEN
U LB &8 JFILL 5% BYES
$ha7 77 8a2en LOOFL LD it JFILL BYIE
e 3 &1 K H : INCREMENT POINTER
#8315 w20 DR R ; DECRERENT (0T
iR 20 BBSe JR NZ: LO0PL ;60 IF M7 DORE
WeC 18FE BB LOPZ R L2 iLOOF HERE 0N DM
4R a2 B SIART
89860 TOTAL ERRORS
P2 4paC
LOOPL 487
SIRT  4hes

The first thing that is done in the program is to load A
with the data (asterisk in this case) and to load the HL reg-
ister pair with the starting address of the memory area to be
loaded. To enable us to see the results we’re using the start
of the screen video at 3CO0OH. The B register is loaded with
the number of bytes to be filled. If we had specified 1 through
255 bytes that number would have been filled with asterisks.
Specifying zero, however, fills 256 bytes, as we shall see be-
low. LOOP1 through the JR NZ,LOOP1 makes up the main
loop in the program. For each iferation or pass through the
loop one byte of data is filled. Initially the byte at 3CO0H is
filled. Each time through the loop, however, the HL register
pair is incremented by one to point to the next memory byte,
and the B register is decremented by one to count down. If the
count in B has not reached zero, the Z flag is not set by the
decrement, and the conditional branch at 4A0AH is taken.
If the count has reached zero, the program falls through and
the loop at LOOP2 is reached. Notice that the jumps here are
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two-byte relative jumps. If we started with a count of zero,
the count after the decrement of B is 11111111, as you will
see if we subtract a one from eight zeros on paper. Starting
with a count of zero, therefore, causes a fill of 256 bytes.

To run the program, assemble and load using SYSTEM or
T-BUG. If no breakpoint is used, the program will fill the
first four lines of the screen with asterisks. The reader may
wish to try other values for the fill by changing the 2AH at
4A01H, or may change the fill area by changing the 3C00H at
4A03H and 4A04.

An Unsophisticated Block Move

Often it is necessary to move data from one block of mem-
ory to another block of memory. One example of this would
be moving a string of characters that have been input to the
screen display area. Another example might be inserting data
in a table. The data below the inserted entry would have to
be moved down to make room for the new data.

In the next program we’ll be implementing some code to
move one block of memory to another. We’ll use register in-
direct addressing to accomplish this feat. Register pair HL
will point to the source block and register pair DE will point
to the destination block. Register pair BC will contain a count
of the number of bytes to be moved. As BC may hold 0 through
65535, any size block up to maximum memory size may be

_ MEMORY
7 0
HL POINTS HERE —| % R
SOURCE BC CONTAINS THE LENGTH
BLOCK OF THE BLOCK IN BYTES
[ ]
=
] P &
FEE 2
il i w
g g2 §
DE POINTS HERE —=|" ¥ ¢
r
DESTINATION
BLOCK
Y

-

Fig. 6-1. An unsophisticated block move.
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moved. Figure 6-1 shows the manner in which the move will
be done.

We know that using the HL register pair as a pointer will
work with any cpu register. Using BC or DE as a pointer is
only useful for loading and storing the A register, however,
so all data to be transferred must go through the A register.

. RCSETELT
PR it
FRELAE DR

e
N A

The resulting program is shown. Before the loop, HL is
loaded with 0, the start of the source block, and DE is loaded
with 3CO0H, the start of the screen area for the destination.
The BC register pair is loaded with the number of bytes to
be transferred, in this case 1000. If the program works the
way we want it to the first 1000 locations from 0H through
03ETH will be transferred from the ROM BASIC interpreter
to the screen, What should we see on the screen? In a program
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such as the BASIC interpreter there is a mix of relatively
random data. Some of the data will coincidentally represent
ASCII characters while some of the data will be actual BASIC
messages, such as “MEMORY SIZE”. Other data will repre-
sent (coincidentally) graphics data of different types. When
we actually run the program, then, we’ll largely see random
patterns, but some messages.

The main loop of the program starts at LOOP1. The first
thing that is done is to load a byte into A using HL as a reg-
ister pointer. The source byte in A is then stored by using DE
as the destination pointer. HL and DE are then incremented
to point to the next source and destination byte. The count
is then decremented by one. If the count is not zero, the pro-
gram loops back to LOOPI1, otherwise the program falls
through to LOOP2. Now let’s look at the way in which we
test for a count of zero. While decrementing a single register
sets the zero flag if the count decrements to zero, decrement-
ing a register pair sets no flags. Why? That’s just the way
the instructions work. (Never try to be too logical with a
given instruction set on any computer.) The BC register pair
is tested for zero by effectively oRing the B and C registers
together. Remember that the A register must be used for an
OR operation, and that the OR of any two bits produces a one
if either of the bits is a one. If no bits are a one then the re-
sult is zero in this case, and the zero flag is set. The only time
no bits in either the B or C registers will be ones is when the
count in BC is zero and hence we have our test.

Have you run the program yet? If you do, you'll find an in-
teresting display of some of the secrets of the Radio Shack
interpreter, displayed in living black and white on your
TRS-80 screen. Try changing the source address, destination
address, and byte count to display different areas of memory.
Be careful not to overwrite the program itself or T-BUG,
however. Keep the destination from pointing toward the
4000H through 4A00H area!

While the above program is perfectly fine for an 8080A
(sniff!), one simply wouldn’t want to run such a gaucherie
on a Z-80.

An Elegant Block Move

The block move instructions on the Z-80 take the entire
code from 4A09H through 4A11H in the above program and
reduce it to one instruction! This is truly an elegant instrue-
tion. The Z-80 instruction for this is the LDIR instruction.
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If we recode the program above to work with the LDIR, we
come up with the program below.

o 1 o l'\i" r—-—v., -

EBIRH (THIS IS BN ELLBRNT VERSIM OF

g&'r*ir? r!ruﬂ.:.:"'?g

B
R CiEER i STRET LD H. g i S(ECE
R Y B b BE, sider (DESTIMATIN
i MEERT  BBicE Li gL g 1B BYTES
S EIER e lopp LD ;R BUR BVE IT)
8B 15T ABiER LOF? K LF SLOOP HERE AT BN
R PEIOR 3

n~"-" T ey

Sl THTH ERRIRS

LR 4R8P

As you can see in the program, the LDIR must have the HL,
DE, and BC register pairs initialized to the source address,
destination address, and byte count, respectively. Then it goes
off looping to itself automatically until the byte count reaches
zero, It would be interesting for the reader to examine the
registers after the LDIR. We would find that HL and DE
point to the last byte transferred plus one and that register
pair BC contains 0.

The LDDR instruction works the same way as the LDIR
instruction except that the register pairs are set up to the
end of the source block, the end of the destination block, and
the number of bytes to be transferred. Data is transferred
from end to start in the LDDR, as shown in Figure 6-2.

There are two other block move instructions in the Z-80
instruction set, the LDI and the LLDD. They operate exactly
the same way as the LDIR and the LDDR, except that as each
byte is transferred, the instruction pauses and the next in-
struction is executed. The program must check for the ter-
minating condition of zero count in the BC register pair. The
LDI instruction code that follows is identical to the operation
of the LDIR, except that the test for BC=0 is done externally
to the L.DI,
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START LD HLO ;SOURCE

LD  DE3COOH ;DESTINATION

LD BC,1000 ;10600 BYTES

LOOP DI ;TRANSFER ONE BYTE
JP PELOOP ;CONTINUE IF BC NOT 0
One would expect the Z flag to be set when the byte count

in BC is decremented down to zero. This is not the case, how-
ever, in either the LDI or LDD. The parity/overflow flag is
the one that is set after each transfer. When BC has reached
zero, the parity/overflow flag will be reset (PO mnemonic),
otherwise it will be set (PE mnemonic). The conditional jump,
therefore, is done on overflow set, or “parity even.”

MEMORY
7 0
L
SOURCE BC CONTAINS THE LENGTH
BLOCK OF THE BLOCK IN BYTES
HL POINTS HERE —| ¢ 1
I~
v =
5= 2
= w
[} )
== 2
k
DESTINATION
{ BLOCK
DE POINTS HERE —»{ Y
- -

Fig. 6-2. Data transfer for an LDDR.

The LLDI and LDD are used when the block transfer action
is required, but when there must be intermediate processing
between the transfer of individual bytes. Examples of this
would be a transfer of a block of data until a terminating
character such as line feed or null was reached, or transfer
of data except for lower case characters.

To illustrate this intermediate processing, and to give the
reader a graphic example of how the LDI, LDD, LDIR, and
LDDR transfer data, we have coded the following program.
This program slowly transfers a block to video memory in
forward fashion, and then transfers another block in back-
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ward fashion. Subroutine SLOWLY is used to slow down the
transfer by a timing loop after each byte.

BRLER ;1 GRAPHIC BXAWPLE OF BLOGK BAES

A BiEM AH4E L B, 1824
SRR @S Lot LD

R EA44R dled JF

H

B3 3

A CiEER B START LD

: S[ERCE
SDESTIMATION

sFULL SCREEN

i XFER ONE BYTE

G0 IF (§ER

i DELAY

s CONTINGE

i PNT TO LRST SCREEN
NEW BLOCK

;5TILL 1824 BYTES

Fil HaT
48 I04R 7 SLoWY
g 1B BT B I

$HT MFFE7 HL: FFFH
15 a16R4 BE. 1624

B EbE
4fil E2364R
428 (038

Iy 4nar
L'—g'— b .-E.E
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Sy 4R3n
Fr-yaY) [Ty u]
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8220 LOOF2
H58

#2608 DO
270 SLY
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TS s
HITH ERRORS

!LB

DEC

0
K

FET

g 1 53
2

FL. DONE
SLGALY
Loor2

;AFER BRCKHARDS
G0 IF DORE

i A

;CONTINE
SENDLESS LOOP

i TIMING CHT
L TR

;G0 IF MOT HOME
JRETIRN

The first four instructions of this routine are identical to
the code above. If the P/V bit is set, subroutine SLOWLY is
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called before the next byte is transferred. When the last byte
has been transferred, the P/V bit is reset and the jump is
taken to NXT. At NXT the DE register is decremented to
point to the last screen location; it held 4000H before the
decrement. The address of the last location in the second 1024
bytes of ROM (7FFH) is put into HL as the first source ad-
dress. At LOOP2 an L.LDD is used to transfer the data from
TFFH through 400H to the screen video memory, with the
SLOWLY delay between each byte. Subroutine SLOWLY
simply sets the immediate value 80H (128) into A and then
decrements the count, looping until the count reaches zero.
Register A was used to hold the count as all other registers
were dedicated to functions used by the LDI or LDD.

To tie together some of the concepts we have explored in
this chapter, we’ll conclude with two general-purpose rou-
tines, FILL, a routine to fill any character in any sized-block
in memory, and MOVE, a routine to move any block in mem-
ory anywhere else.

FILL Subroutine

The FILL subroutine is modeled after the one discussed
earlier in this chapter. It is CALLed with certain registers
loaded with parameters to be used for the fill.

(D) = Byte to be filled, any value
(HL) = Start of memory area to be filled
(BC) = Number of bytes to fill

Upon return from the subroutine, the contents of BC are zero,
the fill byte remains in D, and HL points to the last byte filled
plus one. The contents of A have been zeroed.

i

2158 : SERCITIN T0 FILL DATA IN MENORY
B8 ENTRY:(D)=DATA T BE FILLED

BMAE {H =CTRET OF FILL ARER
BE (E3=k OF B¥TES TOFILL
144 ; [AlL FIi

TR EXIT: {D=SRE

Eifs (M =EMD OF FILLH
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MOVE Subroutine

The MOVE subroutine uses either an LDIR or an LDDR.
The subroutine automatically checks to see whether the move-
ment should be forward or backward. Ordinarily this is no
problem, but when the source and destination blocks overlap,
the reader can see that there is a conflict if the wrong direc-
tion is used; data will be destroyed before it has been moved
to the new area. On entry into the subroutine, the following
registers are set up.

(HL) = Start of source memory area
(DE) = Start of destination memory area
(BC) = Number of bytes to be moved

Upon return from the move, the contents of BC are zero, and
the two other register pairs point to the last locations plus
one.

£ Fr F - S SN et CTARTY
Bia : ENTRY(HLO=SORT ST

B8 (BEDESTINATI STRET

EH4B . EXIT:(HL=SOUREE ARERe
E-FL Ryl
BRI E
s & % FEHEE B
8 £ iR PR H (5T SR ANRR
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Subroutine Format

FILL and MOVE follow the general format that will be
used for subroutines in this book. All of the subroutines are
assembled at 4A00H. To use them in other areas of memory
it is generally mandatory to reassemble them with the proper
ORG. Occasionally some of the subroutines will be relocatable;
the subroutine would have identical machine code no matter
what the origin. For this to be possible, the subroutine could
not have direct addressing instructions such as JPs, CALLs,
direct memory loads and stores, and so forth. In these cases
the machine code could be moved without reassembly.

We will start building up a number of general-purpose sub-
routines in these chapters for the reader to use in his own
programs. They’ll be presented in the appropriate chapter
and collected together in the last section of the book. FILL
and MOVE are the first two of the lot.
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Stack Operation

In the sample programs that we have been using up to this
point we haven't been too concerned about the stack. The
stack has been in use, however, and at this point it is best to
pay some attention to it before it turns on us some day and
devours some of our programs.

Every time we execute a CALL, RETurn, PUSH, or POP,
we have been storing data into or removing data from the
stack. For the sample programs here, we have been using
the stack found in T-BUG, which is a short section of memory
contained within the T-BUG program area. The stack can be
located anywhere in RAM memory that we choose, however,
as long as it does not conflict with any of our programs or
data.

To recap what we learned about the stack in a previous
chapter: The stack is an area of memory used to

Store return addresses for CALLs.
Store data when PUSHes are executed.
Store addresses when interrupts are active.

Addresses and data are pushed onto the stack, and the stack
builds downward toward lower-numbered memory when this
is done. A stack pointer register (SP) is adjusted to point to
the top of stack, the location that has been used for the last
CALL or PUSH storage. When a PUSH or CALL is per-
formed, two bytes are pushed onto the stack and the SP reg-
ister is decremented by two. When a POP or RETurn is per-
formed, the two bytes are popped from the stack and the SP
register is incremented by two to point to the next top of
stack.

To see how this works, let us establish our own stack area
and look at some of the stack actions. There is one instruction
that loads the stack pointer with the first top of stack address,
the LD SP,nnnn instruction. We will set aside 100 or so loca-
tions for the stack area starting at location 4AFFH, and
building down to 4A9CH. The instruction to initialize this
stack area is

LD SP,4BOOH ;INITIALIZE STACK POINTER

The alert reader has discovered that one more than the ac-
tual top of stack address is used for initialization. The reason
for this is that every PUSH or CALL first decrements the stack
pointer before storing data. At any given time, then, the stack
pointer points to the last byte stored, except for this case
where no data has been stored at all.
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P SP ORIGINALLY POINTED HERE

} 4A0AH = LOCATION AFTER CALL SR1

\ SP NOW POINTS HERE

4B0OH
4RFFH 4AH
4AFEH OAH
4AFDH
4AFCH

~.

Fig. 6-3. Stack area Example 1.

When a CALL is executed, the address of the next instruc-
tion is stored in the stack with the most significant byte of
the location stored in (SP)-1 and the least significant byte
stored in (SP)-2. Let us illustrate this with a program. Key
in the following code, set a breakpoint at LOOP, and then
examine the stack area at 4AFFH down. You should see data
as shown in Figure 6-3.
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In the siinple case above, the new stack area was used to
store {two bytes of the return address 4A and OA in locations

104




4AFFH and 4AFEH, respectively. The stack pointer address
used by T-BUG was saved in HL before the new stack area
was initialized. When the short subroutine (the shortest pos-
sible subroutine) was executed and the RETurn made, the
return address was retrieved from the stack and loaded into
the program counter to cause the return to location 4A0AH.
The LD SP,HL instruction restores the original stack pointer
address used by T-BUG.

Nesting of subroutines can be used to any number of levels,
just as GOSUBs in BASIC can cause nested subroutine action.
As each new subroutine level is CALLed, the stack pointer is
decremented further and further, and the return addresses
are stored in lower and lower addresses in the stack. The pro-
gram that follows shows how this works for four levels of
subroutines. Breakpoint at LOOP, execute the program, and
then examine the stack, starting at 4AFFH. It should corre-

spond to Figure 6-4, and indicates that four separate return
addresses were stored.
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4B0OOH
4AFFH
4AFEH
4AFDH
4AFCH
4AFBH
4AFAH
4AF9H

When PUSHes or POPs are used, two bytes of data are also
stored or retrieved in the stack, but the data represents data
from cpu registers and not return addresses. When data is
PUSHed, the high-order register is stored in (SP)-1 and the
low-order register is stored in (SP)-2, in the same order that
return addresses are stored (Figure 6-5). A third program fol-
lowing illustrates the storage action when CALLs and PUSHes

-~

5P ORIGINALLY POINTED HERE

ARH AROAH = LOCATION AFTER CALL SR1
0AH
4AH
i 4A11H = LOCATION AFTER CALL SR2
4AH
o 4A15H = LOCATION AFTER CALL SR3

\SP POINTED HERE IN SR3
BUT WAS RESTORED TO 4BOCH
AFTER RETURNS

Fig. 6-4. Stack area Example 2.

are intermixed, as they will be in most programs,

T -
4B00H +—SP ORIGINALLY POINTED HERE
4AFFH (H) } HL FROM PUSH
AAFEH (L)
4AFDH 4AH ] 4AOBH = LOCATION AFTER CALL SRI
4AFCH 0BH
4AFBH 4RH } 4AL3H = LOCATION AFTER CALL SR?
AAFAH 134
AAF9H 4AH } 4A17TH = LOCATION AFTER CALL SR3
4AF8H 17H \
SP POINTED HERE IN SR3
BUT WAS RESTORED TO 4BOOH
AFTER RETURNS AND POP
A i
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Once the stack area has been defined by loading, the pro-
grammer need never worry about the stack and can indis-
criminantly perform as many CALLs and PUSHes as he
wishes, with a matching RETurn or POP for each CALL or
PUSH. Generally, 30 or 40 bytes of RAM is large enough for
even the most creative programmers; the number of nested
subroutines is limited to 3 or 4 primarily by the problems in
keeping the program in hand, just as in BASIC.
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CHAPTER 7

Arithmetic and Compare
Operations

This chapter will discuss the heart of any computer system
—the ability to perform simple and complex arithmetic. In
order to use the arithmetic capabilities of the Z-80, we will
have to look in more detail at how numbers are represented
in the architecture of the Z-80. After that chore, we’ll build
some routines to do adds and subtracts, decimal arithmetic,
and other arithmetic-related processing.

Number Formats: Absolutely and Positively!

There are really three different ways to represent numbers
in basic assembly-language routines used in the TRS-80,
absolute numbers, signed numbers, and binary-coded decimal.
(Another format, floating-point format, is too complex to de-
scribe in less than several chapters.) However, knowing the
three formats just mentioned will enable the user to do vir-
tually anything he wants in a TRS-80 processing routine.

In the previous chapters, we've been discussing numbers
in absolute form, for the most part, although a few signed
numbers have crept in when we discussed indexing and rela-
tive instructions. Absolute numbers are always positive; they
can be looked at as ‘“absolute-valued numbers.” Earlier in
the book we mentioned that in eight bits the binary values
00000000 through 11111111 could be held and that these repre-
sented 0 through 255 decimal. This still holds true (was there
a collective sigh of relief?). Similarly, 16-bit numbers repre-
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sent values from sixteen zeros to sixteen ones, or decimal
0 through 65535.

We also mentioned that binary numbers represented powers
of two, and drew the parallel of the bit position in binary
numbers representing powers of two, just as the decimal posi-
tion in decimal numbers represents powers of ten. See Figure
7-1.

POWERS OF 2 Qoo ~wreu—
| | O P I |

JWENANR
101101
‘ L— 1X1=1
I 0X2=0
1X4=4
1X8=28
0X16=0
1X32 = 32
919+

POWERS OF 10 =g

Fig. 7-1. Decimal versus binary numbers.

To convert any binary number to decimal, it is simply a
matter of adding up all of the powers of two represented by
one bits in the bit positions. Converting from decimal to binary
can be done by inspection (what is the largest power of two
that will go into this decimal number, what is the next, and
so forth) or by reference to tables. See Figure 7-2.

We have been working with kexadecimal numbers, which
are really a shorthand way of representing binary numbers
that have been grouped in 4-bit groups. Converting from
hexadecimal to decimal can be done in the same fashion as
binary; that is, finding the weight of the power of 16 repre-
sented, or by reference to tables, as can conversion of decimal
numbers to hexadecimal, See Figure 7-3.

Absolute numbers in binary (hexadecimal) can be used
to represent memory addresses, counts, or any quantity that
will never be negative. In register indirect addressing we’ve
used absolute numbers to represent memory locations in the
HL and other register pairs. We’ve also used absolute numbers
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for counts or to represent the number of bytes to move in a
block move. There are no negative numbers of bytes that must
be moved, at least in this universe.

TO CONVERT FROM
BINARY TO DECIMAL

1. LIST POWERS OF TWO REPRESENTED
2. ADD TO FIND DECIMAL NUMBER.

01000101
64 + 4+1 =69
TO CONVERT FROM
DECIMAL TO BINARY
105
-84 (2
41 |y}
=32 ®»— 01101001

8 o— 1
-3 @ f
1

2%

. SUBTRACT LARGEST POSSIBLE POWER OF TWO.

1

2. PUT A BINARY 1 IN THE APPROPRIATE BIT POSITION.
3. CONTINUE UNTIL 0 REMAINS.

4. FILL IN REMAINDER OF BIT POSITIONS WITH ZEROS.

Fig. 7-2. Decimal/binary conversions.

Signed Numbers

The same registers and memory locations that are used
to hold absolute addresses can hold signed numbers. Many
different types of signed formats could be used, but the one
that the Z-80 and TRS-80 uses is the same type that most other
computers use, and it’s called two’s complement notation.

In two’s complement notation, the most significant bit of
eight bits or sixteen bits is used to represent the sign of the
number. If the sign bit is a zero, then the remainder of the
number is the same as an absolute number. For example, if
we had the two’s complement number 00001000, then that
number would be an 8, the same as the absolute number
00001000. The difference between absolute numbers and posi-
tive two’s complement numbers, is that the most significant
bit is always the sign, and that means that the maximum
positive number that can be held in 8-bit two’s complement
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CONVERTING FROM

BINARY TO DECIMAL
AND BACK
1. GROUP BINARY # INTO 4-BIT GROUPS. 4
‘0101 1101 00117 0111 f,%%';ssfs
2. CHANGE EACH 4 BIT GROUP INTO TO CONVERT
A HEXADECIMAL DIGIT 0-9.A-F FROM HEX
TO BINARY
5 D 3 7
CONVERTING FROM
HEXADECIMAL TO
DECIMAL
1. LIST POWERS OF 16 REPRESENTED.
L ©
e B =
1] Il ] ]
5 D 3 7
2. MULTIPLY BY DIGIT TO FIND DECIMAL.
g 8 o
5 D 3 7
| Y—— 1= 7
3X16 = 48
13X 256 = 3328
5 X 4096 = 20480
23363

Fig. 7-3. Decimal/hexadecimal conversions.

notation is 01111111, or 127, about half of the maximum in
absolute form (11111111 or 255). In sixteen bits the maximum
positive number is 0111111111111111, or 32767 decimal.

Now here’s the rub, as the Bard says in Much Ado About the
TRS-80. When the sign bit is a one, the two’s complement
number represented is a negative number. When we see the
two’s complement number 10001000, we know from the sign
bit that the number is negative. The question is, what nega-
tive number is it? The answer is not —8, even though it looks
logical (all things in computers are not logical, in spite of the
digital design). To find the actual negative number repre-
sented, we have to go through a purely rote procedure. It’s not
complicated, but it is tedious. In a negative two’s complement
number, to find the number represented, change all the ones to
zeros, change all the zeros to ones, and add one. This process
is demonstrated in Figure 7-4.
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Why are negative numbers represented this way? To sim-
plify hardware design. Next question . .. I’'m afraid that’s the
way it is, TRS-80 programmers. Fortunately for us, the as-
sembler takes care of constructing negative numbers and we
generally don’t have to be too concerned about manipulating
them.

EXAMPLE 1: FIND TWO'S COMPLEMENT OF 10001000

10001000  NUMBER
01110111  CHANGE ALL ONES TO ZEROS
ALL ZEROS TO ONES
+.1 ADD ONE
01111000  THIS NUMBER NEGATED IS THE
ACT;JAL NUMBER. IN THIS CASE
—120

EXAMPLE 2: FIND TWO'S COMPLEMENT OF 11110000

11110000  NUMBER
00001111  CHANGE ALL ONES TO ZEROS
ALL ZERQS TO ONES
+ 1 ADD ONE
00010000 - 16

EXAMPLE 3: FIND TWO'S COMPLEMENT OF 01111111

01111111 SIGN BIT IS + (0) AND NUMBER
i3 CORRECT AS IT STANDS {+127)

Fig. 7-4. Two’s complement notation.

If we start applying this process of reconverting negative
numbers, we find that the smallest number in two’s comple-
ment notation is 10000000, or —128, while the largest nega-
tive number is 11111111, or —1, for 8-bit values. Similarly,
the range of negative numbers for 16-bit values is —32768
(10000000000000000) through —1 (1111111111111111). So,
the range of all signed numbers that can be held in 8 bits is
+127 through —128 and in 16 bits +32767 through —32768.

The nice thing about two’s complement notation is that the
Z-80 will automatically handle addition and subtraction of
any combination of signs. In the days of double-precision
BASIC variables that can be processed in just about any man-
ner this may raise some reader’s eyebrows, but things in as-
sembly language are at the most basic computational level.
About the only requirement is that the programmer must
know something about the range of numbers he will be hand-
ling. In 8 bits one can get +127 and no more, and in 16 bits
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